
Application of symbolic finite element tools to nonlinear
hyperelasticity

Martin Sandve Alnæs∗

Department of Scientific Computing
Simula Research Laboratory
e–mail: martinal@simula.no

Kent-Andr é Mardal and Joakim Sundnes
Department of Scientific Computing

Simula Research Laboratory

Summary The present paper addresses the use of high level languages,symbolic mathematical
tools and code generation in an implementation of the finite element method, using a nonlinear
hyperelasticity equation as example. Advantages of the software development method that will
be demonstrated include closeness to the mathematics, enabling high human efficiency with easy
to use high level languages, while still keeping a high computational efficiency by generating
tailored inner loop code for the problem at hand. The application we have in mind for the equations
presented here is the simulation of the passive elastic properties of heart and blood vessel tissue.

Introduction

Biomechanical modeling often involves coupling of many physical phenomena, including elas-
tic tissue deformations, fluid flow, and electrochemical processes. This often results in com-
plicated mathematical models, for which it is challenging to design and implement efficient
numerical methods. Researchers involved in modeling and simulation of biomedical processes
are also likely to have very varied backgrounds, and in many cases limited experience with
numerical methods and programming. These are good arguments for increasing the abstrac-
tion level in the simulator development, by using high levellanguages and tools that make the
computer program closely resemble the mathematical model.Developing the tools that com-
bine these abilities with good numerics and efficient implementation has been an active re-
search topic for decades. One approach that has led to recentprogress in this area is to wrap
efficient implementations in compiled languages with high level scripting languages such as
Python [2], which are currently gaining momentum in the scientific computing communities
[6, 21, 23, 17, 18, 5, 19, 22, 3, 24, 20, 16, 9, 8, 14, 12]

Characteristic of most biomaterials is that they can undergo large elastic deformations, often
governed by complicated non-linear constitutive laws. In this paper we will demonstrate the
implementation of equations for nonlinear anisotropic hyperelasticity with our software SyFi [5,
15] and PyCC [18]. The properties of hyperelastic materialsare defined in terms of a strain
energy function, see e.g. [10] for details. Within the limits of hyperelastic materials, we want
to easily apply new material laws, by simply specifying a newstrain energy function. Through
application of symbolic mathematics we can use automated differentiation of the material laws
where applicable. As the engine for symbolic mathematics weuse the C++ library GiNaC [1]
and its python bindings swiginac [3]. A primary goal for the work is that the implementation
should be close to the mathematics of the problem, in this case close to the weak formulation
used for the finite element method. We assume the reader is familiar with continuum mechanics
and the finite element method, but understanding the equations in detail should not be necessary
to appreciate the ideas of this software development strategy.

The paper is outlined as follows. We first give a brief introduction to the mathematical model,
followed by an outline of the applied numerical methods. We then present the corresponding

code that specifies the same equations and solves them. This is followed by a brief explanation
of the code generation techniques, and finally some preliminary results.

Mathematical Model

Momentum equations

The general momentum balance equation, or equilibrium equation, reads

∂2
u

∂t2
= ∇·σ + f ,

∂2uj

∂t2
=

∂σij

∂xi

+ fj, (1)

whereσ is the Cauchy stress tensor,u is the deformation vector field, andf is the body forces.
In this paper we are primarily concerned with modelling the mechanical behavior of heart and
blood vessel tissue, for which the acceleration term may be neglected. We thus focus on the
stationary equation

∇·σ = −f ,
∂σij

∂xi

= −fj , (2)

which is here defined relative to the deformed geometry. Although Equation (2) describe a
stationary situation, it is still relevant for describing the time dependent movement of the heart
and blood vessels during normal physiological function. The equation must then be interpreted
as a quasi-stationary equation, where the boundary conditions and source term change with
time. More specifically, in a numerical time integration scheme, the work involves solving a
number of problems of the kind (2), with a new source term and boundary conditions for each
time step.

Finite hyperelasticity

In this section we describe a displacement based formulation of the equilibrium equations for
a hyperelastic material. Since we allow large (finite) displacements, it is most convenient to
use the Full Lagrangian formulation. With a Full Lagrangianformulation, the equations are
formulated on a reference geometry instead of updating the geometry based on the deformation.
Let the initial domain at timet = 0 be denotedΩ0, and the deformed domain at timet beΩt. If
the coordinate of a particle in the reference geometryΩ0 is x, then the coordinate of the same
particle inΩt is x̂. With this in mind we can define the displacementu as

u = x̂ − x, ui = x̂i − xi. (3)

In the reference coordinates, the equilibrium equation reads

∇·P = −f ,
∂Pij

∂xi

= −fj , (4)

whereP is known as the first Piola-Kirchoff stress tensor, which is related to the Cauchy stress
tensor through a geometry mapping. The rest of this section describes the components needed
to formulate material laws for this stress tensor.

We will need the deformation gradientF, defined as

F =
∂x̂

∂x
= I +

∂u

∂x
= I + (∇u)T , Fij =

∂x̂i

∂xj

= δij +
∂ui

∂xj

. (5)

The deformation gradient can be decomposed into an orthonormal rotation tensorR and a
stretch tensorU, F = RU. SinceR is orthonormal it follows that thatFT

F = U
T
U, which is

independent of rigid body rotation. We can thus use the rightCauchy-Green strain tensor

C = F
T
F, Cij = FkiFkj, (6)

as a measure of pure stretch or strain, without rigid body motions. From the right Cauchy-Green
tensor another important measure of strain may be derived, namely the Green-Lagrange strain
tensor

E =
1

2
(C − I), Eij =

1

2
(Cij − δij), (7)

which fulfills E = 0 for u = 0. By assuming small deformations and neglecting higher order
terms, the Green-Lagrange strain tensor can be shown to be equal to the strain tensor for small
deformationsǫ. The right Cauchy-Green and the Green-Lagrange strain tensor are both defined
relative to the reference geometryΩ0.

It turns out the constitutive laws are easier formulated with the symmetric second Piola-Kirchoff
stress tensorS,

S = F
−1

P, Sij = F−1

ik Pkj, (8)

since it is work-conjugate with the Green-Lagrange strain.This gives the final formulation of
the equilibrium equations

∇·(FS) = −f ,
∂(FikSkj)

∂xi

= −fj . (9)

Material laws

As noted in the introduction, the constitutive law for a hyperelastic material is specified by a
strain energy functionΨ. The second Piola-Kirchoff stress tensor is given as partial derivatives
of the strain energy with respect to the Green-Lagrange strain tensor components

S =
∂Ψ

∂E
= 2

∂Ψ

∂C
, Sij =

∂Ψ

∂Eij

= 2
∂Ψ

∂Cij

. (10)

Many strain energy functions exist for different media, andit is of interest to be able to switch
easily between these material laws in the software. In particular, constitutive laws for many bio-
materials is an active research topic with few definite answers. Below we will use two different
strain energy functions for demonstration.

A simple nonlinear material law for hyperelastic materialsis the Saint Vernant-Kirchoff law

Ψ(E) =
1

2
λ(traceE)2 + µE : E. (11)

One of the material laws that has been applied in modeling of passive heart tissue is the trans-
versely isotropic Fung[7] type law

Q = bffE2

ff + bxx(E
2

nn + E2

ss + E2

sn + E2

ns) + bfx(E
2

fn + E2

nf + E2

fs + E2

sf), (12)

Ψ(E) =
1

2
K(eQ − 1), (13)

wheref , s, andn refer to a coordinate system oriented with fibers in the material, in the fiber,
sheet, and sheet normal directions respectively. See f.ex.[11] for more details. Examples of the
implementation of both these constitutive equations and simple test cases are presented below.

def finite_elasticity_B(v, u, f, G, GinvT, psi):
nsd = v.nops()
I = Id(nsd)
symbol_names = ["F", "E", "S"]
Fs, Es, Ss = symbolic_matrices(nsd, symbol_names)

Du = grad(u, GinvT)
Dv = grad(v, GinvT)
DuT = Du.transpose()
F = I + DuT
FTs = Fs.transpose()
E = (FTs * Fs - I) / 2
p = psi.value(Es)
S = diff(p, Es)
integrand = contract(Fs*Ss, Dv) - inner(f, v)

tokens = [(Fs, F), (Es, E), (Ss, S)]
return (integrand, tokens)

Figure 1: Implementation of the integrand((F(u)S(u)) : ∇v − f · v) for the weak formulation of finite
elasticity.

Numerical methods

Weak formulation

The finite element method relies on an equivalent form of the PDE (9) called the weak form.
Although this can also be derived from physical principles,we view it here as a purely mathe-
matical step in the formulation of the numerical discretization. The weak form is obtained by
multiplying with a test functionv and integrating overΩ0;

∫

Ω0

(∇·FS + f) · vdx = 0,

∫

Ω0

(
∂(FikSkj)

∂xi

+ fj)vj = 0. (14)

Assuming traction free or Dirichlet boundary conditions for simplicity, integration by parts now
yields

∫

Ω0

(FS : ∇v − f · v)dx = 0,

∫

Ω0

(FikSkj

∂vj

∂xi

− fjvj) = 0. (15)

To simplify the further discussion, we introduce the bilinear form

a(u,v) =

∫

Ω0

FS : ∇vdx. (16)

Discretization

We discretize the weak form (15) by the finite element method.Note that the symbolu will
sometimes denote the physical deformation vector field, andsometimes the discrete solution
vector from the linear system. The interpretation should beclear from the context. The vector

def finite_elasticity_rhs(u, psi):
nsd = u.nops()
I = Id(nsd)

Du = grad(u)
DuT = Du.transpose()

F = I + DuT
FT = F.transpose()

E = (FT * F - I) / 2

Es = symbolic_matrix(nsd, "E")
p = psi.value(Es)
S = diff(p, Es)

for i in range(Es.nops()):
S = S.subs(Es.op(i) == E.op(i))

f = -div(F*S)
return f

Figure 2: Manufactured analytic right hand side computed from an analytic solution.

field u is approximated as a superposition ofn vector basis functionsvj with coefficientsuj:

u =

n
∑

j=1

uj
v

j (17)

Applying test functionsvi for i = 1, . . . , n we get a system of non-linear algebraic equations

B(u) = 0, (18)

where componenti is given by

Bi(u) = a(u,vi) −

∫

Ω0

f · vi dx = 0, for i = 1, . . . , n. (19)

This system is to be solved for the unknown coefficientsuj in the vectoru.

Linearization

For solving of the nonlinear equations (19), we consider thewell-known iterative Newton-
Raphson method.

This requires the solution of linear systems of the form

J∆u = B(u), Jijδuj = Bi(uk), (20)

whereB is the residual at the previous iteration, andJ is the Jacobian with components given
by

Jij =
∂

∂uj
a(u,vi) =

∫

Ω0

∂(FS)

∂uj
: (∇v

i)T dx. (21)

class StrainEnergy:
def value(self, E):

"""Evaluate the strain energy Psi(E)."""
pass

class SaintVenantKirchhoff(StrainEnergy):
def __init__(self, lambd, mu):

self.lambd = lambd
self.mu = mu

def value(self, E):
return self.lambd * (trace(E)**2) / 2

+ self.mu * contract(E, E)

class Fung(StrainEnergy):
def __init__(self, fiber, K, bff, bfx, bxx):

self.fiber = fiber
self.K = K
self.bff = bff
self.bfx = bfx
self.bxx = bxx

def value(self, E):
Missing feature: assuming fiber == delta_ij
Eff = E[0,0]
...
Q = self.bff*Eff**2 + \

self.bxx*(Enn**2 + Ess**2 + Esn**2 + Ens**2) + \
self.bfx*(Efn**2 + Enf**2 + Efs**2 + Esf**2)

return self.K * (exp(Q) - 1) / 2

Figure 3: Strain energy functions.

Recall that the stresses occurring in (21) are defined as partial derivatives of the strain energy
function Ψ. For biomaterials, as we will see below, this function can become rather compli-
cated, and performing the differentiation in (21) is a tedious task. A commonly applied solution
strategy is to differentiateΨ by hand to obtain analytical expressions for the stressesSks, and
then do the final differentiation numerically, either by expanding the Jacobian or by differen-
tiating the complete integrand directly. We will apply a different approach, where we apply
automatic differentiation software to generate the code for analytic expressions of the entries in
the Jacobian. We start by expanding the Jacobian into

Jij =

∫

Ω0

(

∂F

∂uj
S + F

∂S

∂uj

)

: (∇v
i)T dx, (22)

Jij =

∫

Ω0

(

∂Frk

∂uj
Sks + Frk

∂Sks

∂uj

) (

∂vi
s

∂xr

)

dx. (23)

In the computation of the element tensor we will fixi andj as one permutation at a time, as a
practical step to reduce the order of the tensors we have to deal with. Since the test functionvi is

Algorithm 1 Newton’s method.

GivenB, u, and tolerance

ǫ = ‖B(u)‖
while ǫ > tolerance

e = J
−1

B(u)
u = u− e

ǫ = ‖B(u)‖

known, the term∂vi
s/∂xr is trivial to compute in the software. The two terms inside the paren-

thesis require somewhat more care, and it is convenient to treat these separately. We assumeuj

known, and first compute the quantities in∂Frk

∂uj Sks in the following order:

F = I + (∇u)T , Frs = δrs +
∂ur

∂xs

, (24)

∂F

∂uj
= (∇v

j)T ,
∂Frs

∂uj
=

∂vj
r

∂xs

, (25)

E =
1

2
(FT

F − I), Ers =
1

2
(FkrFks − δij), (26)

S =
∂Ψ

∂E
, Srs =

∂Ψ

∂Ers

. (27)

Having completed these steps, we turn our attention to the second termFrk
∂Sks

∂uj . The computa-
tion of this term is somewhat more complicated, and we introduce two helper variablesH and
C, which are tensors of rank two and four, respectively. The computation is then made in the
following order

H
j =

1

2

(

F
T ∂F

∂uj
+

∂F
T

∂uj
F

)

, Hj
rs =

1

2

(

Fkr

∂Fks

∂uj
+

∂Fkr

∂uj
Fks

)

, (28)

Cpqrs =
∂2Ψ

∂Epq∂Ers

=
∂Srs

∂Epq

, (29)

∂Srs

∂uj
= Hj

pqCpqrs. (30)

In the implementation we do not compute the rank four tensor directly, but use a loop over two
indices and handle the ”subtensor” as a matrix. With this approach, each component in∂Srs

∂uj can
be computed as a contraction of rank 2 tensors. The calculations (29)-(30) are then replaced by

∀(r, s) : ∀(r, s) :

∂Srs

∂uj
= H

j :
∂Srs

∂E
.

∂Srs

∂uj
= Hj

pq

∂Srs

∂Epq

. (31)

We have now computed all the components we need, and the integrand may be calculated with
simple matrix products and a tensor contraction using equation (23).

def finite_elasticity_J(u, v, w, G, GinvT, psi):
nsd = u.nops()
I = Id(nsd)
symbol_names = ["F", "E", "H", "S", "dS", "dFS"]
Fs, Es, Hs, Ss, dSs, dFSs = \

symbolic_matrices(nsd, symbol_names)

Du = grad(u, GinvT)
Dv = grad(v, GinvT)
Dw = grad(w, GinvT)
DuT = Du.transpose()
DwT = Dw.transpose()

F = I + DwT
dF = DuT
FTs = Fs.transpose()
dFT = dF.transpose()

E = (FTs * Fs - I) / 2

p = psi.value(Es)
S = diff(p, Es)

stress increment
dS = zeros(nsd, nsd)
H = ((dFT * Fs) + (FTs * dF)) / 2
for r in range(nsd):

for s in range(nsd):
dS[r, s] = contract(Hs, diff(S[r,s], Es))

dFS = ((dF * Ss) + (Fs * dSs))
integrand = contract(dFSs, Dv)

tokens = [(Fs, F), (Es, E), (Ss, S),
(Hs, H), (dSs, dS), (dFSs, dFS)]

return (integrand, tokens)

Figure 4: Implementation of linearized integrand for the application of the Newton-Raphson method to
the weak formulation of finite elasticity.

Implementation

In our implementation of the full Lagrangian finite elasticity equations, we strive to stay close
to the mathematics. A normal approach often referred to as the engineering formulation is to
manually take into account symmetries and sparsity of the fourth order elasticity tensorCijkl to
define a smaller nine by nine matrix, while representing second order tensors as vectors. This
formulation is easy to implement in traditional finite element software, but has little similarity
with the original mathematical model. With the formulationshown in (31), combined with
the finite element library SyFi (Symbolic Finite elements [5, 15]), we avoid this step and stay
closer to the mathematical model in the implementation of the weak forms. Furthermore, a part
of the process of implementing finite hyperelasticity is often to compute∂Ψ

∂E
and ∂2Ψ

∂E∂E
manually,

or with the help of external symbolic applications.) The expressions are then manually written
into the C/C++/Fortran code. We instead utilize a symbolic library to perform the differentiation
as part of our application and generate code from these expressions automatically. Therefore,
adding a newΨ is as simple as writing the expression forΨ. Code for the implementation of the
Saint Vernant-Kirchoff and Fung type laws are seen in Figure3. An implementation of a strain
energy function can also be used to specify quantities to compute as part of the postprocessing
stage, like strains and stresses.

Code generation

SyFi uses symbolic computations to construct basis functions for various finite elements. It has
support for a large set of elements, but in this paper we will stick to regular Lagrange elements
on tetrahedra. Based on the explicit basis functions expressions, we can construct symbolic
expressions for the integrand of a weak form, using symbolicdifferentiation for the differential
operators. To make the user code close to the mathematics, differential operators like∇·u, ∇u

and ∂Ψ

∂E
are available asdiv(u), grad(u) anddiff(psi, E), and the productsu · v and

A : B are simplyinner(u,v), contract(A,B).

If the weak form only contains polynomials and regular differential operators, SyFi can also
perform the integration over an element symbolically. Since some material laws use exponential
and logarithmic functions, this feature cannot be applied to our problem, and the generated code
will instead apply quadrature for the integration over a cell.

From the resulting symbolic expressions for the weak form, SyFi can generate C++ code for the
computation of the element matrix and element vector. The generated code is in a format spec-
ified by the Unified Form-assembly Code [4] (UFC) project. UFCconsists of a set of abstract
classes in a single header file, providing a predefined interface to the computation of an ele-
ment matrix, evaluating finite element basis functions, mapping degrees of freedom and related
operations. An example of generated low-level code is seen in Figure 6. In this code excerpt,
tabulate tensor is a function from the UFC interface,A is the element vector forB(u),
and the variable namesFxx, Exx, Sxx etc. should be recognizable from the mathematical
formulation, even if the low level expressions are not.

Implementing the weak formulation

Figure 1 shows the implementation of the weak form forB(u). This user-defined function
(finite elasticity B) will be called by the code generation tools in SyFi at a laterstage.
The function will then get as input a symbolic expression fora test functionv, the deformation

<... Imports and initialization>

Define forms to be compiled:
def elasticity_fung_J(u, v, w, fiber, K, bff, bfx, bxx, G, Ginv):

psi = Fung(fiber, K, bff, bfx, bxx)
return finite_elasticity_J(u, v, w, G, Ginv, psi)

def elasticity_fung_B(v, w, f, fiber, K, bff, bfx, bxx, G, Ginv):
psi = Fung(fiber, K, bff, bfx, bxx)
return finite_elasticity_B(v, w, f, G, Ginv, psi)

form_J = MatrixForm(elasticity_fung_J, name="J_fung_3D")
form_B = VectorForm(elasticity_fung_B, name="B_fung_3D")

Initialize SyFi
nsd = 3
order = 1
qorder = 6
SyFi.initSyFi(nsd)
polygon = SyFi.ReferenceTetrahedra()
u_fe = SyFi.VectorLagrange(polygon, order)
fiber_fe = SyFi.TensorP0(polygon)
fe0 = SyFi.P0(polygon)

Define the finite elements to use for each argument:
(ref. arguments to elasticity_fung_* above)
fe_list_J = (u_fe, u_fe, u_fe, fiber_fe, fe0, fe0, fe0, fe0)
fe_list_B = (u_fe, u_fe, u_fe, fiber_fe, fe0, fe0, fe0, fe0)

Generate code for the forms and compile it
compiled_elasticity_form_J = compile_form(form_J, fe_list_J,

integration_mode=’quadrature’, quad_order=qorder)

compiled_elasticity_form_B = compile_form(form_B, fe_list_B,
integration_mode=’quadrature’, quad_order=qorder)

Figure 5: Compiling an element tensor.

void tabulate_tensor(double* A,
const double * const * w,
const ufc::cell& c) const

{
...
static const double quad_weights[24] = {

0.00665379170969, 0.00665379170969, ...
};

for(int iq=0; iq<24; iq++) {
const double x = quad_points[iq][0];
const double y = quad_points[iq][1];
const double z = quad_points[iq][2];
const double quad_weight_detG = quad_weights[iq] * detG;

F00 = Ginv00*(-w[0][0]+w[0][3])+(-w[0][0]+w[0][9])*Ginv02
+Ginv01*(w[0][6]-w[0][0])+1.0;

F01 = Ginv12*(-w[0][0]+w[0][9])+...
...
S22 = E22*exp(w[4][0]*((E01*E01)+(E10*E10)+...
A[0] += ((S20*F12+S00*F10+S10*F11)*...

Figure 6: Excerpt of generated code for the computation of the element vector forB(u)

field u from the previous iteration as a superposition of symbolic basis functions,

u =
ne

∑

k=1

uk
v

k, (32)

the body forcef in the same representation asu, symbolic representations of the geometry map-
pingsG andG−T for mapping to a reference element, and a material law definition represented
by aStrainEnergy objectpsi. Later during the finite element assembly, the coefficients
uk in the symbolic representation will be input values from a finite element vector restricted to
one element. The return value is a symbolic representation of the integrand for a single entry in
the element vector, along with a list of tokens. Thetokens list holds symbol/value pairs for
variables that will be generated code for, and which the integrand expression depends on. After
calling this user-defined function, the code generation tools will generate code for assigments
to these variables and wrap this code in a quadrature loop. Anexcerpt of this generated code is
shown in Figure 6.

Stepping through the middle part offinite elasticity B, each line shows a clear resem-
blance with equations (24)-(27) and (15). The symbolic variables can be matrices and vectors,
greatly reducing error prone index handling. Computing gradients in the reference domain is
performed withgrad(u, GinvT). To reduce the size of the expressions, symbolic matrices
are used forF, E andS to represent their values in dependent expressions. Noticein particu-
lar how the strain energy functionpsi is evaluated with a symbolic matrixEs, and the stress
tensor is differentiated with respect to the same symbolic matrix with diff(p, Es).

In Figure 4, similar code is shown for the computation ofJ(u). Notice that the fourth order
elasticity tensor is never explicitly constructed, it onlyexists as a step in the algorithm formu-

K, bff, bfx, bxx = 876, 18.48, 2.8, 3.58
fiber = (1,0,0, 0,1,0, 0,0,1)

<... initialize mesh, vectors, matrix, etc.>

while eps > newton_tolerance:
Collect coefficients to the form J
(ref. fe_list_J in previous code example)
coeffs_J = [u, fiber, K, bff, bfx, bxx]
assembler.assemble_matrix(compiled_elasticity_form_J,

coeffs_J, J_before_bc)

Modify boundary rows and columns in J
(J, BC, C) = dirichlet_boundarycondition(J_before_bc,

boundary_dofs)
B = BC*B_before_bc # set boundary components to zero

Find and apply the correction
du.fill(0)
du = conjgrad(J, du, F)
u -= du

coeffs_B = [u, f, fiber, K, bff, bfx, bxx]
assembler.assemble_vector(compiled_elasticity_form_B,

coeffs_B, B_before_bc)

eps = L2(B_before_bc)
iter += 1

Figure 7: Newton loop with assembly of linear system in each iteration.

lation in equation (31). Zeros and cancelling terms are automatically taken into account by the
symbolic code generation tools, so that the resulting generated code for the computation of the
element matrix and vector will be partially optimized before it is compiled.

Software verification

Another application of symbolic computations in finite element implementations is to verify
the software with the method of manufactured solutions. First we define a set of (possibly
unphysical) analytical solutions, and calculate the body forcef required to obtain this solution
using the strong formulation of the equilibrium equations (9). Figure 2 shows code for these
calculations. Next we can solve the discrete equations withthis calculated body forcef , and
compare the computed solution with the original expressionto find the error. This approach
is particularly convenient when using complicated material laws like the Fung-law described
previously.

Application code

PyCC (Python Computing Components [18]) is a high level Python framework for the imple-
mentation of PDE solvers in development at Simula. After defining the weak form of the equa-

Figure 8: Testcase with SVK material law

Figure 9: Testcase with Fung material law

tions like described above, and compiling the element matrix and element vector forJ(u) and
B(u) respectively, these compiled UFC forms can be loaded in a Python application and used
by a PyCC Assembler object to assemble the global linear system inside a Newton-Raphson
iteration, like shown in Figure 7. The linear equations in each iteration are solved with a con-
jugate gradient method implementation from PyCC. For simple visualization in the application
script, a Python module called Viper is used, which is a thin layer on top of VTK [13]. Simu-
lation results are written to file in VTK format, which were loaded in Paraview [20] (v2.9.9) to
create the figures.

Test cases

As a simple test case, we apply Dirichlet boundary conditions to the x-component ofu on
two opposite sides of a cube, and leave the rest of the boundary traction-free. To remove the

possibility of a rigid body translation, we must also fix all components ofu in one point.

u · ex = 0, x = 0, (33)

u · ex = αi, x = 1, (34)

u = 0, x = 0, (35)

t = 0, 0 < x < 1. (36)

Figures 8 and 9 show the resulting deformation fields as glyphs and color-coded magnitude of
u from one side of the cube with its normal vector in y-direction. The Fung law here yields a
fully compressible deformation, while with the SVK law we see the cube is compressed, and
the color-coded magnitude shows where the fixed point is.

Discussion

One of the key advantages of this implementation is that it iseasy to add new material laws.
Since the implementations of the weak forms and postprocessing quantities (not shown) are
close to mathematical model formulation, they should be easily readable for people without a
background in numerics and programming. For those who are used to the traditional engineering
formulation of the elasticity equations this point may not be very important. The user is still
subjected to technical implementation details in SyFi, so there is still a need to work more on
the user interface of the library. This is work in progress.

Generated code from SyFi is highly efficient for simple equations of similar complexity as mass
matrices and stiffness matrices, competing with or even outperforming traditional quadrature-
based implementations. But for more complex equations likethe finite hyperelasticity presented
here there are challenges to overcome in the code generation. The generated code can grow quite
large, and great care must be taken to keep the code size small. This problem grows for higher
order elements.

In the current implementation and with the tests done so far,the time spent assembling the
linear system dominates the Newton iterations for these equations. However, this is expected to
improve significantly with future versions of SyFi, when more optimized code can be generated.
Since the code generation tools has a more high level overview of the mathematical expressions
than the C++ compiler will have at a later stage, it is possible to perform large optimizations
by analyzing dependencies in the expressions. This role is traditionally filled by the human
code implementer, who chooses the algorithms to use and tunes the code in a manual process.
The current code generation tools in SyFi perform only very simple optimization steps, but
improving this is work in progress. Quantifying the speedupcannot be done at this stage.

The software has not been tested with the most complicated material laws, only with unidirec-
tional fiber directions and without compressibility constraints. There is also limited support for
more advanced boundary conditions, which also must be adressed before truly relevant physio-
logical applications can be attempted.

References

[1] GiNaC, 2006 http://www.ginac.de.

[2] Python, 2006 http://www.python.org/doc/.

[3] Swiginac, 2006 http://swiginac.berlios.de/.

[4] M. S.Alnæs, H. P.Langtangen, A.Logg, K.-A.Mardal and O.Skavhaug UFC, 2007
http://www.fenics.org/ufc/.

[5] M. S.Alnæs and K.-A.Mardal Syfi user manual http://www.fenics.org/pub/documents/syfi/syfi-
user-manual/syfi-user-manual.pdf.

[6] D.Ascher, P. F.Dubois, K.Hinsen, J.Hugunin and T.Oliphant Numerical Python
http://www.pfdubois.com/numpy/.

[7] Y.Fung Biomechanics: mechanical properties of living tissuesSpringer-Verlag New York, Inc.,
1993.

[8] J.Hoffman, J.Jansson, C.Johnson, M. G.Knepley, R. C.Kirby, A.Logg, L. R.Scott and G. N.Wells
FEniCS, 2006http://www.fenics.org/.

[9] J.Hoffman, J.Jansson, A.Logg and G. N.WellsDOLFIN, 2006http://www.fenics.org/dolfin/.

[10] G.Holzapfel Nonlinear Solid Mechanics, A Continuum Approach for Engineering John Wiley&
Sons, Ltd, 2001.

[11] J. D.HumphreyCardiovascular Solid MechanicsSpringer-Verlag, 2002.

[12] R. C.Kirby FIAT, 2006http://www.fenics.org/fiat/.

[13] Kitware The Visualization ToolKit, 2006http://www.vtk.org/.

[14] A.Logg FFC, 2006http://www.fenics.org/ffc/.

[15] K.-A.Mardal Syfi - an element matrix factory To appear inthe PARA’06 proceedings to be pub-
lished in the Springer series Lecture Notes in Computer Science (LNCS).

[16] MayaVi packagehttp://mayavi.sourceforge.net.

[17] PETSc software packagewww.mcs.anl.gov/petsc/.

[18] PyCC, 2007 Software framework under development.http://www.simula.no/pycc/.

[19] PySE software packagehttp://pyfdm.sf.net.

[20] Sandia National Laboratories ParaView, 2006http://www.paraview.org/.

[21] SciPy software packagehttp://www.scipy.org.

[22] SWIG software packagehttp://www.swig.org.

[23] Trilinos software packagehttp://software.sandia.gov/trilinos.

[24] Vtk packagehttp://www.vtk.org.

