Application of symbolic finite element tools to nonlinear
hyperelasticity

Martin Sandve Alnaes

Department of Scientific Computing
Simula Research Laboratory
e—mail: martinal@simula.no

Kent-Andr & Mardal and Joakim Sundnes

Department of Scientific Computing
Simula Research Laboratory

Summary The present paper addresses the use of high level langsgelsolic mathematical

tools and code generation in an implementation of the filgenent method, using a nonlinear
hyperelasticity equation as example. Advantages of thievaoé development method that will
be demonstrated include closeness to the mathematicdingnhigh human efficiency with easy
to use high level languages, while still keeping a high coraenal efficiency by generating
tailored inner loop code for the problem at hand. The apitinave have in mind for the equations
presented here is the simulation of the passive elasticeptiep of heart and blood vessel tissue.

Introduction

Biomechanical modeling often involves coupling of many gibgl phenomena, including elas-
tic tissue deformations, fluid flow, and electrochemicalcpsses. This often results in com-
plicated mathematical models, for which it is challengingdesign and implement efficient
numerical methods. Researchers involved in modeling andlation of biomedical processes
are also likely to have very varied backgrounds, and in mases limited experience with
numerical methods and programming. These are good argarfamincreasing the abstrac-
tion level in the simulator development, by using high ldeglguages and tools that make the
computer program closely resemble the mathematical m@ueleloping the tools that com-
bine these abilities with good numerics and efficient immatation has been an active re-
search topic for decades. One approach that has led to neiEgress in this area is to wrap
efficient implementations in compiled languages with higtel scripting languages such as
Python [2], which are currently gaining momentum in the stifee computing communities
[6, 21, 23,17, 18, 5, 19, 22, 3, 24, 20, 16, 9, 8, 14, 12]

Characteristic of most biomaterials is that they can unaléasigge elastic deformations, often
governed by complicated non-linear constitutive laws.his paper we will demonstrate the
implementation of equations for nonlinear anisotropicdrgtasticity with our software SyFi [5,
15] and PyCC [18]. The properties of hyperelastic mate@aés defined in terms of a strain
energy function, see e.g. [10] for details. Within the lisnitf hyperelastic materials, we want
to easily apply new material laws, by simply specifying a retxain energy function. Through
application of symbolic mathematics we can use automaftézteintiation of the material laws
where applicable. As the engine for symbolic mathematicsiseethe C++ library GiNaC [1]
and its python bindings swiginac [3]. A primary goal for thenk is that the implementation
should be close to the mathematics of the problem, in thie clse to the weak formulation
used for the finite element method. We assume the reader ilsafiawith continuum mechanics
and the finite element method, but understanding the equsatiadetail should not be necessary
to appreciate the ideas of this software development giyate

The paper is outlined as follows. We first give a brief introtion to the mathematical model,
followed by an outline of the applied numerical methods. Wentpresent the corresponding

code that specifies the same equations and solves themsThibived by a brief explanation
of the code generation techniques, and finally some pretingiresults.

Mathematical Model

Momentum equations

The general momentum balance equation, or equilibriumteruaeads

82u 821,Lj 80’@‘
o~ vVoth o ou

""fjv (1)

whereo is the Cauchy stress tensarjs the deformation vector field, arfds the body forces.
In this paper we are primarily concerned with modelling thechmnical behavior of heart and
blood vessel tissue, for which the acceleration term maydagected. We thus focus on the
stationary equation

Vo =-f, — =—f; (2)
which is here defined relative to the deformed geometry. Adtfh Equation (2) describe a
stationary situation, it is still relevant for describirigettime dependent movement of the heart
and blood vessels during normal physiological functiore €quation must then be interpreted
as a quasi-stationary equation, where the boundary conditatnd source term change with
time. More specifically, in a numerical time integration egte, the work involves solving a
number of problems of the kind (2), with a new source term amdhidary conditions for each
time step.

Finite hyperelasticity

In this section we describe a displacement based formulatioghe equilibrium equations for
a hyperelastic material. Since we allow large (finite) dispiments, it is most convenient to
use the Full Lagrangian formulation. With a Full Lagrangfanmulation, the equations are
formulated on a reference geometry instead of updatingebengtry based on the deformation.
Let the initial domain at timeé = 0 be denoted?,, and the deformed domain at timée ;. If
the coordinate of a particle in the reference geom@lys x, then the coordinate of the same
particle in€; is x. With this in mind we can define the displacemards

u=X-—X, u; = Ty — 1. (3)
In the reference coordinates, the equilibrium equatiodsea

OP;.
VP =-f Y = f 4
9 8[1:2 f]? ()
whereP is known as the first Piola-Kirchoff stress tensor, whicteisted to the Cauchy stress
tensor through a geometry mapping. The rest of this secesoribes the components needed
to formulate material laws for this stress tensor.

We will need the deformation gradieRt defined as

B L E:%:@ﬁ%. (5)
J

The deformation gradient can be decomposed into an orthwdaotation tensolR and a
stretch tensolJ, F = RU. SinceR is orthonormal it follows that thdf” F = U”U, which is
independent of rigid body rotation. We can thus use the Gghtchy-Green strain tensor

C =F7TF, Cij = FiiFij, (6)

as a measure of pure stretch or strain, without rigid bodyanst From the right Cauchy-Green
tensor another important measure of strain may be deriadely the Green-Lagrange strain
tensor

1 1

E = §(C—I), Eijzi(ci'_éij)a (7)

which fulfills E = 0 for u = 0. By assuming small deformations and neglecting higherrorde
terms, the Green-Lagrange strain tensor can be shown touaé tecthe strain tensor for small
deformations. The right Cauchy-Green and the Green-Lagrange straiotens both defined
relative to the reference geomefry.

It turns out the constitutive laws are easier formulatedhwie symmetric second Piola-Kirchoff
stress tensads,

S=F'P, Sij = F' Py, (8)

7

since it is work-conjugate with the Green-Lagrange strahis gives the final formulation of
the equilibrium equations

V.(FS) = —f, % —_f. (9)

Material laws

As noted in the introduction, the constitutive law for a hygdastic material is specified by a

strain energy functio®. The second Piola-Kirchoff stress tensor is given as pattiavatives

of the strain energy with respect to the Green-Lagrangesgasor components
ov ov ov ov

7 OB 0C;;

Many strain energy functions exist for different media, @rid of interest to be able to switch
easily between these material laws in the software. Inqadati, constitutive laws for many bio-
materials is an active research topic with few definite amswigelow we will use two different
strain energy functions for demonstration.

A simple nonlinear material law for hyperelastic materialthe Saint Vernant-Kirchoff law
1
V(E) = 5)\(157’6L06E)2 + uE : E. (11)

One of the material laws that has been applied in modelingss$ipe heart tissue is the trans-
versely isotropic Fung[7] type law
1
U(E) = K (e - 1), (13)
wheref, s, andn refer to a coordinate system oriented with fibers in the nadien the fiber,

sheet, and sheet normal directions respectively. SegLEkior more details. Examples of the
implementation of both these constitutive equations amghka test cases are presented below.

def finite elasticity B(v, u, f, G GnvT, psi):
nsd = v.nops()
I = I d(nsd)
synbol _nanes = ["F", "E", "S"]
Fs, Es, Ss = synbolic_matrices(nsd, synbol nanes)

Du = grad(u, G nvT)

Dv = grad(v, G nvT)

DuT = Du.transpose()

F =1 + DuT

FTs = Fs.transpose()

E = (FTs* Fs - 1) /[2

p = psi.val ue(Es)

S =diff(p, Es)

integrand = contract (Fs*Ss, Dv) - inner(f, v)

tokens = [(Fs, F), (Es, E), (Ss, S)]
return (integrand, tokens)

Figure 1: Implementation of the integraf@ (u)S(u)) : Vv — f - v) for the weak formulation of finite
elasticity.

Numerical methods

Weak formulation

The finite element method relies on an equivalent form of th& 9) called the weak form.

Although this can also be derived from physical principles,view it here as a purely mathe-
matical step in the formulation of the numerical discrat@a The weak form is obtained by
multiplying with a test functiornv and integrating ovet;

O(FySk,j
/QO(V-FS +f) - vdx =0, /QO((#Z_’“) + f)v; = 0. (14)

Assuming traction free or Dirichlet boundary conditionsgonplicity, integration by parts now
yields

/ (FS:Vv—f -v)dx=0, / (EkSkj% — fjv;) = 0. (15)
Qo Qo 83:

i

To simplify the further discussion, we introduce the bianéorm

a(u,v) = / FS : Vvdx. (16)
Qo

Discretization

We discretize the weak form (15) by the finite element metidmte that the symboh will
sometimes denote the physical deformation vector field,samdetimes the discrete solution
vector from the linear system. The interpretation shoul@lbar from the context. The vector

def finite elasticity rhs(u, psi):

nsd = u.nops()
I = I d(nsd)
Du = grad(u)

DuT = Du.transpose()

F
FT

| + DuT
F.transpose()

E=(FT* F- 1)/ 2

Es = synbolic_matrix(nsd, "E")
p = psi.val ue(Es)

S =diff(p, Es)

for i in range(Es.nops()):

S = S.subs(Es.op(i) == E.op(i))

f = -div(F+S)
return f

Figure 2: Manufactured analytic right hand side computechfan analytic solution.

field u is approximated as a superpositionofector basis functions’ with coefficientsu’:

u= iujvj a7
j=1
Applying test functions/* fori = 1, ..., n we get a system of non-linear algebraic equations
B(u) =0, (18)
where componentis given by
BZ-(u):a(u,vi)—/Q f-vidx =0, fori=1,... n. (19)
0

This system is to be solved for the unknown coefficieriti the vector.

Linearization

For solving of the nonlinear equations (19), we considerwilei-known iterative Newton-
Raphson method.

This requires the solution of linear systems of the form
JAu = B(u), Jijéuj = Bz-(uk), (20)

whereB is the residual at the previous iteration, aht the Jacobian with components given
by

Jij = ija(u,vi) :/ B(aFS) (Vv lax. (21)
Q, oW

cl ass Strai nEnergy:
def val ue(self, E):
"""Evaluate the strain energy Psi(E)."""
pass

cl ass Sai nt Venant Ki r chhof f (St r ai nEner gy) :
def __init__ (self, lanbd, nu):
self.lanbd = | anbd
self.mu = nu
def val ue(self, E):
return self.lanbd + (trace(E)*+2) / 2
+ self.mu » contract(E, E)

cl ass Fung(Strai nEnergy):

def __init__(self, fiber, K Dbff, bfx, bxx):
sel f.fiber = fiber
self.K =K
sel f.bff bf f
sel f.bfx = bfx
sel f. bxx = bxx

def val ue(self, E):
M ssing feature: assumng fiber == delta_ij
Eff = E[0, 0]

Q=self.bffxEffx+x2 + \
sel f.bxx*(Enn**2 + Ess**2 + Esn**2 + Ens**2) + \
self.bfx*x(Efn**2 + Enf*+*2 + Efs**2 + ESf=**2)
return self.K+ (exp(Q - 1) / 2

Figure 3: Strain energy functions.

Recall that the stresses occurring in (21) are defined amlpdetivatives of the strain energy
function W. For biomaterials, as we will see below, this function candoee rather compli-
cated, and performing the differentiation in (21) is a teditask. A commonly applied solution
strategy is to differentiat& by hand to obtain analytical expressions for the stresggsand
then do the final differentiation numerically, either by arging the Jacobian or by differen-
tiating the complete integrand directly. We will apply afdient approach, where we apply
automatic differentiation software to generate the codamalytic expressions of the entries in
the Jacobian. We start by expanding the Jacobian into

OF oS i
. 8Frk 0Sks 811;

In the computation of the element tensor we will figndj as one permutation at a time, as a
practical step to reduce the order of the tensors we haveatadlh. Since the test functiost is

Algorithm 1 Newton’s method.
GivenB, u, and tolerance

e=[B(u)l

while € > tolerance
e=J"'B(u)
u=u-—e
e = [|B(u)||

known, the termdv’ /O, is trivial to compute in the software. The two terms inside plaren-
thesis require somewhat more care, and it is convenien¢# these separately. We assure
known, and first compute the quantities%rjﬁ&CS in the following order:

F—T+(Va), Fpo =6, + 2%, (24)
0x,
OF : OF ovd
D T TS _ r
9w~ YV ow or. (25)
1 1
E = §(FTF - I)v E?”S = §(szrFk:s - 62’]’)7 (26)
o o
S = . Sre = 5E 27)

Having completed these steps, we turn our attention to ttenskterms,, 2>t The computa-

tion of this term is somewhat more complicated, and we intcedwo helper variableH and
C, which are tensors of rank two and four, respectively. Thematation is then made in the
following order

] OF OFT , 1 OF, OF,
J— = T J — = Ylks kr
0> oS,
Cpors = = (29)
P OB 0, OE,,
aSrs j
ow H3Cogrs- (30)

In the implementation we do not compute the rank four tengectly, but use a loop over two
indices and handle the "subtensor” as a matrix. With this@ggh, each component #iz can
be computed as a contraction of rank 2 tensors. The caloo&a(R9)-(30) are then replaced by

V(r, s) : Y(r,s) :
8Srs TTd . 8Srs aSrs 17 857"3
oul " OE oui — POE,,’

(31)

We have now computed all the components we need, and theantegray be calculated with
simple matrix products and a tensor contraction using éoué23).

def finite_ elasticity J(u, v, w, G GnvT, psi):
nsd = u. nops()
I = |l d(nsd)
synbol _nanmes = ["F", "E", "H', "S", "dS", "dFS"]
Fs, Es, Hs, Ss, dSs, dFSs =\
synbolic_matrices(nsd, synbol nanes)

Du = grad(u, G nvT)
Dv = grad(v, G nvT)
Dw = grad(w, G nvT)
DuT = Du.transpose()
DwWT = Dw. transpose()
F =1 + DwT

dF = DuT

FTs = Fs.transpose()
dFT = dF.transpose()

E=(FTs »x Fs -) [/ 2

p = psi.val ue(Es)
S =diff(p, Es)

stress increnent
dS = zeros(nsd, nsd)
H= ((dFT = Fs) + (FTs = dF)) / 2
for r in range(nsd):
for s in range(nsd):
dS[r, s] = contract(Hs, diff(S[r,s], Es))

dFS = ((dF » Ss) + (Fs * dSs))
integrand = contract(dFSs, Dv)

tokens = [(Fs, F), (Es, E), (Ss, 9,
(Hs, H, (dSs, dS), (dFSs, dFS)]
return (integrand, tokens)

Figure 4: Implementation of linearized integrand for thelagation of the Newton-Raphson method to
the weak formulation of finite elasticity.

Implementation

In our implementation of the full Lagrangian finite eladiycequations, we strive to stay close
to the mathematics. A normal approach often referred to @®tigineering formulation is to
manually take into account symmetries and sparsity of thelicorder elasticity tensar; ;,; to
define a smaller nine by nine matrix, while representing séawrder tensors as vectors. This
formulation is easy to implement in traditional finite elamheoftware, but has little similarity
with the original mathematical model. With the formulatishown in (31), combined with
the finite element library SyFi (Symbolic Finite elements I5]), we avoid this step and stay
closer to the mathematical model in the implementation efékak forms. Furthermore, a part
of the process of implementing finite hyperelasticity igafto comput@% and{j’Ez—{;IjE manually,

or with the help of external symbolic applications.) The mgsions are then manually written
into the C/C++/Fortran code. We instead utilize a symbdbiaky to perform the differentiation
as part of our application and generate code from these &sipres automatically. Therefore,
adding a new’ is as simple as writing the expression forCode for the implementation of the
Saint Vernant-Kirchoff and Fung type laws are seen in Figurén implementation of a strain
energy function can also be used to specify quantities tqocenas part of the postprocessing
stage, like strains and stresses.

Code generation

SyFi uses symbolic computations to construct basis funstior various finite elements. It has
support for a large set of elements, but in this paper we wikgo regular Lagrange elements
on tetrahedra. Based on the explicit basis functions egmes, we can construct symbolic
expressions for the integrand of a weak form, using symldlifierentiation for the differential
operators. To make the user code close to the mathemafiesedtial operators likd7-u, Vu
andg—g are available adi v(u),grad(u) anddi ff(psi, E),andthe producta-v and
A : B are simplyi nner (u, v),contract (A B).

If the weak form only contains polynomials and regular d#fgial operators, SyFi can also
perform the integration over an element symbolically. 8iseme material laws use exponential
and logarithmic functions, this feature cannot be applealtr problem, and the generated code
will instead apply quadrature for the integration over a.cel

From the resulting symbolic expressions for the weak foryf 8an generate C++ code for the
computation of the element matrix and element vector. Tmegged code is in a format spec-
ified by the Unified Form-assembly Code [4] (UFC) project. UtgDisists of a set of abstract
classes in a single header file, providing a predefined aterfo the computation of an ele-
ment matrix, evaluating finite element basis functions, piag degrees of freedom and related
operations. An example of generated low-level code is seéngure 6. In this code excerpt,

t abul at e_t ensor is a function from the UFC interfacé\ is the element vector fdB(u),
and the variable namdaxx, Exx, Sxx etc. should be recognizable from the mathematical
formulation, even if the low level expressions are not.

Implementing the weak formulation

Figure 1 shows the implementation of the weak form Bfu). This user-defined function
(finite_elasticity_B)will be called by the code generation tools in SyFi at a latage.
The function will then get as input a symbolic expressiongoest functiorv, the deformation

<... Inmports and initialization>

Define forms to be conpil ed:
def elasticity fung J(u, v, w, fiber, K, bff, bfx, bxx, G Gnv):
psi = Fung(fiber, K, bff, bfx, bxx)
return finite elasticity J(u, v, w, G Gnv, psi)

def elasticity fung B(v, w, f, fiber, K, bff, bfx, bxx, G Gnv):
psi = Fung(fiber, K, bff, bfx, bxx)
return finite elasticity B(v, w, f, G Gnv, psi)

formJ = MatrixFornm(elasticity fung J, nane="J fung_3D")
formB Vector Form(el asticity_fung B, name="B fung_3D")

Initialize SyFi

nsd =3

or der =1

gor der =6

SyFi .initSyFi (nsd)

pol ygon = SyFi.ReferenceTetrahedra()

u fe = SyFi . Vect or Lagrange(pol ygon, order)
fiber _fe = SyFi. Tensor PO(pol ygon)

fel = SyFi . PO(pol ygon)

Define the finite elements to use for each argunent:

(ref. argunents to elasticity fung_* above)

fe list J = (ufe, ufe, ufe, fiber fe, fe0, fe0, fel, fel)
fe list B=(ufe, ufe, ufe, fiber fe, fe0, fe0, feO, fe0)

Generate code for the forns and conpile it
conpiled elasticity formJ = conpile fornm(formJ, fe list_J,
i ntegrati on_node=' quadrature’, quad_order=qorder)

conpiled elasticity formB = conpile forn(formB, fe list_ B,
i ntegrati on_node=' quadrature’, quad_order=qorder)

Figure 5: Compiling an element tensor.

voi d tabul at e_t ensor (doubl ex A,
const double * const * w,
const ufc::cell & c) const

static const doubl e quad_wei ghts[24] = {
0. 00665379170969, 0.00665379170969,
1

for(int iq=0; iqg<24; iqg++) {
const double x = quad_points[iq][0];
const double vy quad_points[iq][1];
const double z quad_points[iq][2];
const doubl e quad_wei ght _det G = quad_wei ghts[iqg] * detG

FOO = G nvOOx(-wWO]J[0]+W O] [3])+(-WO][O]+W[0] [9]) *G nv02
+G nvO1x(wW 0] [6]-Ww O] [O]) +1. O;

FO1 = G nvl2+x(-wfO]J[0]+W O] [9]) +. ..

822 = E22xexp(W 4] [0] *((EO1xEO1) +(ELO0*E10) +. . .

A[0] += ((S20%xF12+S00*F10+S10*F11)*. ..

Figure 6: Excerpt of generated code for the computatione@tthment vector foB(u)

field u from the previous iteration as a superposition of symbddisi® functions,
u= Z ufvP, (32)

the body forcd in the same representationilgssymbolic representations of the geometry map-
pingsG andG~7 for mapping to a reference element, and a material law digimiepresented
by a St r ai nEner gy objectpsi . Later during the finite element assembly, the coefficients
u* in the symbolic representation will be input values from @dirlement vector restricted to
one element. The return value is a symbolic representafitreantegrand for a single entry in
the element vector, along with a list of tokens. Thekens list holds symbol/value pairs for
variables that will be generated code for, and which thegiiatled expression depends on. After
calling this user-defined function, the code generatiofstadll generate code for assigments
to these variables and wrap this code in a quadrature loogxaerpt of this generated code is
shown in Figure 6.

Stepping through the middle partof ni t e_el asti ci t y_B, each line shows a clear resem-
blance with equations (24)-(27) and (15). The symbolicalalgs can be matrices and vectors,
greatly reducing error prone index handling. Computingdgmats in the reference domain is
performed withgr ad(u, G nvT) . To reduce the size of the expressions, symbolic matrices
are used foF, E andS to represent their values in dependent expressions. Naotigarticu-

lar how the strain energy functigesi is evaluated with a symbolic matrks, and the stress
tensor is differentiated with respect to the same symboditrisawith di ff (p, ES).

In Figure 4, similar code is shown for the computationJgfi). Notice that the fourth order
elasticity tensor is never explicitly constructed, it oelists as a step in the algorithm formu-

K, bff, bfx, bxx = 876, 18.48, 2.8, 3.58
fiber = (1,0,0, 0,1,0, 0,0, 1)

<... initialize mesh, vectors, matri x, etc.>

whil e eps > newton_tol erance:
Coll ect coefficients to the formJ
(ref. fe_list_J in previous code exanpl e)
coeffs J = [u, fiber, K, bff, bfx, bxx]
assenbl er. assenble_matri x(conpiled elasticity formJ,
coeffs_J, J _before_bc)

Modi fy boundary rows and columms in J

(J, BC, © = dirichlet_boundarycondition(J before_ bc,
boundary_dof s)

B = BC-B _before _bc # set boundary conponents to zero

Find and apply the correction

du.fill(0)
du = conjgrad(J, du, F)
u-= du

coeffs B=1[u, f, fiber, K bff, bfx, bxx]
assenbl er. assenbl e_vector(conpil ed_el asticity_formB,
coeffs B, B before hc)

eps = L2(B_before_bc)
iter += 1

Figure 7: Newton loop with assembly of linear system in eaetation.

lation in equation (31). Zeros and cancelling terms areraatally taken into account by the
symbolic code generation tools, so that the resulting geedrcode for the computation of the
element matrix and vector will be partially optimized befaris compiled.

Software verification

Another application of symbolic computations in finite ekarhimplementations is to verify
the software with the method of manufactured solutionsstRire define a set of (possibly
unphysical) analytical solutions, and calculate the baxdtgd f required to obtain this solution
using the strong formulation of the equilibrium equatiofis Figure 2 shows code for these
calculations. Next we can solve the discrete equations thithcalculated body forcé, and
compare the computed solution with the original expressiofind the error. This approach
is particularly convenient when using complicated matdaas like the Fung-law described
previously.

Application code

PyCC (Python Computing Components [18]) is a high level Bytiramework for the imple-
mentation of PDE solvers in development at Simula. Afterrdedj the weak form of the equa-

u Magnitude
0.02 0.04

Figure 8: Testcase with SVK material law

u Magnitude
0.00 0.03 0.05

Figure 9: Testcase with Fung material law

tions like described above, and compiling the element matrd element vector faf (u) and
B(u) respectively, these compiled UFC forms can be loaded in adPyapplication and used
by a PyCC Assembler object to assemble the global lineaesysiside a Newton-Raphson
iteration, like shown in Figure 7. The linear equations iokederation are solved with a con-
jugate gradient method implementation from PyCC. For sewualization in the application
script, a Python module called Viper is used, which is a thiyel on top of VTK [13]. Simu-
lation results are written to file in VTK format, which werealded in Paraview [20] (v2.9.9) to
create the figures.

Test cases

As a simple test case, we apply Dirichlet boundary condétitomthe x-component ofi on
two opposite sides of a cube, and leave the rest of the boyn@ation-free. To remove the

possibility of a rigid body translation, we must also fix alinsponents ofi in one point.

u-e, =0, x =0, (33)
u-e, = ai, =1, (34)
u=0, x =0, (35)
t=0, 0<zxz<l. (36)

Figures 8 and 9 show the resulting deformation fields as glynid color-coded magnitude of
u from one side of the cube with its normal vector in y-direstidhe Fung law here yields a

fully compressible deformation, while with the SVK law weesthe cube is compressed, and
the color-coded magnitude shows where the fixed point is.

Discussion

One of the key advantages of this implementation is thateé@asy to add new material laws.
Since the implementations of the weak forms and postprowgsgiantities (not shown) are
close to mathematical model formulation, they should béyeesadable for people without a
background in numerics and programming. For those who &etoghe traditional engineering
formulation of the elasticity equations this point may net\ery important. The user is still
subjected to technical implementation details in SyFi,evé is still a need to work more on
the user interface of the library. This is work in progress.

Generated code from SyFi is highly efficient for simple egureg of similar complexity as mass
matrices and stiffness matrices, competing with or evepertrming traditional quadrature-
based implementations. But for more complex equationghi&dinite hyperelasticity presented
here there are challenges to overcome in the code generatielgenerated code can grow quite
large, and great care must be taken to keep the code size $imalproblem grows for higher
order elements.

In the current implementation and with the tests done sotlfi@r.time spent assembling the
linear system dominates the Newton iterations for thesateans. However, this is expected to
improve significantly with future versions of SyFi, when raaptimized code can be generated.
Since the code generation tools has a more high level ovenfihe mathematical expressions
than the C++ compiler will have at a later stage, it is posstblperform large optimizations
by analyzing dependencies in the expressions. This roleadstibnally filled by the human
code implementer, who chooses the algorithms to use and theecode in a manual process.
The current code generation tools in SyFi perform only venypse optimization steps, but
improving this is work in progress. Quantifying the speedapnot be done at this stage.

The software has not been tested with the most complicatéerimldaws, only with unidirec-
tional fiber directions and without compressibility coastits. There is also limited support for
more advanced boundary conditions, which also must be sehtdsefore truly relevant physio-
logical applications can be attempted.

References
[1] GiNaC, 2006 http://www.ginac.de.
[2] Python, 2006 http://www.python.org/doc/.
[3] Swiginac, 2006 http://swiginac.berlios.de/.

[4] M. S.Alnes, H. P.Langtangen, A.Logg, K.-A.Mardal and Skavhaug UFC, 2007
http://www.fenics.org/ufc/

[5] M. S.Alnges and K.-A.Mardal Syfi user manual http://wwamics.org/pub/documents/syfi/syfi-
user-manual/syfi-user-manual.pdf.

[6] D.Ascher, P. F.Dubois, K.Hinsen, J.Hugunin and T.Gdiph Numerical Python
http://www.pfdubois.com/numpy/

[7] Y.Fung Biomechanics: mechanical properties of living tissugpringer-Verlag New York, Inc.,
1993.

[8] J.Hoffman, J.Jansson, C.Johnson, M. G.Knepley, R. ®yiA.Logg, L. R.Scott and G. N.Wells
FENICS 2006 http://www.fenics.org/

[9] J.Hoffman, J.Jansson, A.Logg and G. N.WAI®LFIN, 2006 http://www.fenics.org/dolfin/

[10] G.Holzapfel Nonlinear Solid Mechanics, A Continuum Approach for Engiitegy John Wiley&
Sons, Ltd, 2001.

[11] J. D.HumphreyCardiovascular Solid MechanicSpringer-Verlag, 2002.
[12] R. C.Kirby FIAT, 2006 http://www.fenics.org/fiat/

[13] Kitware The Visualization ToolKit, 200&ittp://www.vtk.org/

[14] A.Logg FFC, 2006 http://www.fenics.org/ffc/

[15] K.-A.Mardal Syfi - an element matrix factory To appearttie PARA06 proceedings to be pub-
lished in the Springer series Lecture Notes in Computem8ei¢LNCS).

[16] MayaVi packagehttp://mayavi.sourceforge.net

[17] PETSc software packageww.mcs.anl.gov/petsc/

[18] PyCC, 2007 Software framework under developmatip://www.simula.no/pycc/
[19] PySE software packadetp://pyfdm.sf.net

[20] Sandia National Laboratories ParaView, 20@6://www.paraview.org/

[21] SciPy software packadettp://www.scipy.org

[22] SWIG software packaghttp://www.swig.org

[23] Trilinos software packagéttp://software.sandia.gov/trilinos

[24] Vik packagehttp://www.vik.org

