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1 Introduction

The finite element package SyFi is a C++ library built on top of the symbolic
math library GiNaC [2]. The name SyFi stands for Symbolic Finite elements.
The package provides polygonal domains, polynomial spaces, and degrees of
freedom as symbolic expressions that are easily manipulated. This makes it
easy to define and use finite elements.

All the test examples described in this tutorial can be found in the directory
tests. The reader is of course encouraged to run the examples along with the
reading.

Before we start to describe SyFi, we need to briefly review the basic concepts
in GiNaC. GiNaC is an open source C++ library for symbolic mathematics,
which has a strong support for polynomials. The basic structure in GiNaC
is an ex, which may contain either a number, a symbol, a function, a list of
expressions, etc. (see simple.cpp):

ex pi = 3.14;
ex x = symbol("x");
ex f = cos(x);
ex list = lst(pi,x,f);

Hence, ex is a quite general class, and it is the cornerstone of GiNaC. It has a lot
of functionality, for instance differentiation and integration (see simple2.cpp),

// initialization (f = x^2 + y^2)
ex f = x*x + y*y;

// differentiation (dfdx = df/dx = 2x)
ex dfdx = f.diff(x,1);

// integration (intf = 1/3+y^2, integral of f(x,y) from x=0 to x=1)
ex intf = integral(x,0,1,f);
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GiNaC also has a structure for lists of expressions, lst, with the function
nops() which returns the size of the list, and operator [int i] or the function
op(int i) which returns the i’th element.

We recommend the reader to glance through the GiNaC documentation be-
fore proceeding with this tutorial. GiNaC provides all the basic tools for ma-
nipulation of polynomials, such as differentiation and integration with respect
to one variable. Our goal with the SyFi package is to employ GiNaC, but also
to provide higher level constructs such as differentiation with respect to several
variables (e.g., ∇), integration of functions over polygonal domains, and poly-
nomial spaces. All of which are basic ingredients in the finite element method.

Our motivation behind this project is threefold. First, we wish to make
advanced finite element methods more readily available. We want to do this by
implementing a variety of finite elements and functions for computing element
matrices. Second, in our experience developing and debugging codes for finite
element methods is hard. Having the basis functions and the weak form as
symbolic expressions, and being able to manipulate them may be extremely
valuable. For instance, being able to differentiate the weak form to compute the
Jacobian in the case of a nonlinear PDE, eliminates a lot of handwriting and
coding. Third, having the symbolic expressions and employing GiNaCs tools
for code generation, we are able to write efficient and directly compilable C++
code for the computation of element matrices etc.

To try to motivate the reader, we also show an example where we compute
the element matrix for the weak form of the Poisson equation, i.e.,

Aij =

∫

T

∇NiNj dx.

We remark that the following example is an attempt to make an appetizer. All
concepts will be carefully described during the tutorial.

void compute_element_matrix(Polygon& T, int order) {
std::map<std::pair<int,int>, ex> A; // matrix of expression
std::pair<int,int> index; // index in matrix
LagrangeFE fe; // Lagrangian element of any order
fe.set(order); // set the order
fe.set(domain); // set the polygon
fe.compute_basis_functions(); // compute the basis functions
for (int i=0; i< fe.nbf(); i++) {

index.first = i;
for (int j=0; j< fe.nbf(); j++) {
index.second = j;
ex nabla = inner(grad(fe.N(i)), grad(fe.N(j))); // compute the integrands
ex Aij = T.integrate(nabla); // compute the weak form
A[index] = Aij; // update element matrix

}
}

}

In the above example, everything is computed symbolically. Even the polygon
may be an abstract polygon, e.g., specified as a triangle with vertices x0, x1,
and x2, where the vertices are symbols and not concrete points. Notice also,
that we usually use STL containers to store our datastructure. This leads to
the somewhat unfamiliar notation A[index] instead of A[i,j].
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Finally, we have to warn the reader: This project is still within its initial
phase. Only a few elements have been implemented.

2 Software

2.1 License

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 675 Mass
Ave, Cambridge, MA 02139, USA.

In the case where the GNU licence does not fit your need. Contact the
author at kent-and@simula.no.

2.2 Installation

Dependencies SyFi is a C++ library and therefore a C++ compiler is needed.
At present the library has only been tested with the GNU C++ compiler. The
configure script is a shell script made by the tools Automake and Autoconf.
Hence, you can run this script with, e.g., the GNU Bourne-again shell. Finally,
SyFi relies on the C++ library GiNaC.

Configuration and Installation As mention earlier, the configuration, build
and installation scripts are all made by the Autoconf and Automake tools.
Hence, to configure, build and install the package, simply execute the com-
mands,

bash >./configure
bash >make
bash >make install

If this does not work, it is most likely because GiNaC is not properly installed
on your system. Check if you have the script ginac-config in your path.

Reporting Bugs/Submitting Patches At present, there are no mailing-
lists associated with this package. Therefore, all bug reports etc. should be
directed directly to kent-and@simula.no.

In case, you want to contribute code, please create a patch with diff,

bash >diff -u --new-file --recursive SyFi SyFi-mod > SyFi-<name>-<date>.patch

Here <name> should be replaced with your name and <date> should be replaced
with the current date.
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2.3 Python Support

SyFi now comes with Python support. The Python module is made by using
the tool SWIG [4]. In addition, one should also install Swiginac [5], which is a
Python interface to GiNaC created by using SWIG. More about the usage of
the Python interface can be found in Section 7.

3 A Finite Element

3.1 Basic Concepts

To keep the abstractions clear we briefly review the general definition of a finite
element, see e.g., Brenner and Scott [7] or Ciarlet [9].

Definition 3.1 (A Finite Element) A finite element consists of,

1. A polygonal domain, T .

2. A polynomial space, V .

3. A set of degrees of freedom (linear forms), Li : V → R, for i = 1, . . . , n,
where n = dim(V ), that determines V uniquely.

Furthermore, to determine a basis in V , {Ni}n
i=1, we form the linear system of

equations,
Li(Nj) = δij , (1)

and solve it.

Example 3.1 (Linear Lagrangian element on the reference triangle) In
this example we describe how the linear Lagrangian element is defined on the
reference triangle. Let T be the unit triangle with vertices (0, 0), (1, 0), and
(0, 1). Furthermore, the polynomial space V consists of linear polynomials,
i.e., polynomials on the form N(x, y) = a + bx + cy. The degrees of freedom
for a linear Lagrangian element are simply the pointvalues at the vertices, xi,
Li(Nj) = Nj(xi). The degrees of freedom and (1) determined aj , bj , and cj for
each basis function Nj . For instance N1, which is on the form a1 + b1x + c1y,
is determined by,

Li(N1) = N1(xi) = δi1,

or written out as a system of linear equations,




1 0 0
1 1 0
1 0 1









a1

b1

c1



 =





1
0
0





Hence,
N1 = 1 − x − y.

The functions N2 and N3 can be determined similarly.

In the next sections we will go detailed through polygons, polynomial spaces
and degrees of freedom, and the corresponding software components.
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Figure 1: A line.
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3.2 Polygons

In the finite element method we need the concept of simple polygons to de-
fine integration, polynomial spaces etc. The basic polygons are lines, triangles,
tetrahedra, and orthogonal rectangles and boxes. These basic components will
be briefly described in this section.

3.2.1 Line

A line segment, L, between two points x0 = [x0, y0, z0] and x1 = [x1, y1, z1] in
3D is defined as, see also Figure 3.2.1,

x = x0 + a t, (2)

y = y0 + b t, (3)

z = z0 + c t, (4)

t ∈ [0, 1], (5)

where a = x1 − x0, b = y1 − y0, and c = z1 − z0.
Integration of a function f(x, y, z) along the line segment L is performed by

substitution,

∫

L

f(x, y, z) dx dy dz =

∫ 1

0

f(x(t), y(t), z(t)) D dt, (6)

where D =
√

a2 + b2 + c2.

Software Component: Line The class Line implements a general line. It is
defined as follows (see Polygon.h):

class Line : public Polygon {
ex a_;
ex b_;
public:
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Line() {}
Line(ex x0, ex x1, string subscript = ""); // x0_ and x1_ are points
~Line(){}

virtual int no_vertices();
virtual ex vertex(int i);
virtual ex repr(ex t);
virtual string str();
virtual ex integrate(ex f);

}

Most of the functions in this class are self-explanatory. However, the function
repr deserves special attention. The function repr returns the mathematical
definition of a line. To be precise, this function returns a list of expressions
(lst), where the items are the items in (2)-(5) (see also the example below).
The basic usage of a line is as follows (see line ex1.cpp),

ex p0 = lst(0.0,0.0,0.0);
ex p1 = lst(1.0,1.0,1.0);

Line line(p0,p1);

// show usage of repr
symbol t("t");
ex l_repr = line.repr(t);
cout <<"l.repr "<<l_repr<<endl;
EQUAL_OR_DIE(l_repr, "{x==t,y==t,z==t,{t,0,1}}");

for (int i=0; i< l_repr.nops(); i++) {
cout <<"l_repr.op(" <<i<<"): "<<l_repr.op(i)<<endl;

}

// compute the integral of a function along the line
ex f = x*x + y*y*y + z;
ex intf = line.integrate(f);
cout <<"intf "<<intf<<endl;
EQUAL_OR_DIE(intf, "13/12");

The function EQUAL OR DIE compares the string representation of the expression
with an expected expression represented as a character array. If the string rep-
resentation of the expression and the character array are not equal the program
dies, and this tells the programmer that the test faulted. The reason for the use
of this function is that our test examples also serve as regression tests for the
package.

3.2.2 Triangle

A triangle is defined in terms of three points x0, x1, and x2. Associated with
each triangle are three lines; the first line is between the points x0 and x1, the
second line is between the points x0 and x2, and the third line is between the
points x1 and x2. This is shown in Figure 2. The triangle can be represented
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Figure 2: Triangle
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as

x = x0 + ar + bs, (7)

y = y0 + cr + ds, (8)

z = z0 + er + fs, (9)

s ∈ [0, 1− r], (10)

r ∈ [0, 1], (11)

where (a, c, e) = (x1−x0, y1−y0, z1−z0) and (b, d, f) = (x2−x0, y2−y0, z2−z0).
Integration is performed by substitution,

∫

T

f(x, y, z) dx dy dz =

∫ 1

0

∫ 1−r

0

f(x, y, z) D ds dr,

where D =
√

(cf − de)2 + (af − be)2 + (ad − bc)2.

Software Component: Triangle The class Triangle implements a general
triangle. It is defined as follows (see Polygon.h):

class Triangle : public Polygon {
public:
Triangle(ex x0, ex x1, ex x1, string subscript = "");
Triangle() {}
~Triangle(){}
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virtual int no_vertices();
virtual ex vertex(int i);
virtual Line line(int i);
virtual ex repr();
virtual string str();
virtual ex integrate(ex f);

};

Here the function repr returns a list with the items (7)-(11). In addition to the
functions also found in Line, Triangle has a function line(int i), returning a
line.

The basic usage of a triangle is as follows (see triangle ex1.cpp),

ex p0 = lst(0.0,0.0,1.0);
ex p1 = lst(1.0,0.0,1.0);
ex p2 = lst(0.0,1.0,1.0);

Triangle triangle(p0,p1,p2);

ex repr = triangle.repr();
cout <<"t.repr "<<repr<<endl;
EQUAL_OR_DIE(repr, "{x==r,y==s,z==1.0,{r,0,1},{s,0,1-r}}");

ex f = x*y*z;
ex intf = triangle.integrate(f);
cout <<"intf "<<intf<<endl;
EQUAL_OR_DIE(intf, "1/24");

3.2.3 Tetrahedron

A tetrahedron is defined by four points x0, x1, x2, and x3. Associated with a
tetrahedron are four triangles and six lines. The convention used so far is that

• the first line connects x0 and x1,

• the second line connects x0 and x2,

• the third line connects x0 and x3,

• the fourth line connects x1 and x2,

• the fifth line connects x1 and x3,

• the sixth line connects x2 and x3.

The i’th triangle has the vertices xi%4, x(i+1)%4, and x(i+2)%4, where % is the
modulus operator. The tetrahedron can be represented as, see also Figure 3,

x = x0 + ar + bs + ct, (12)

y = y0 + dr + es + ft, (13)

z = z0 + gr + hs + kt, (14)

t ∈ [0, 1− r − s], (15)

s ∈ [0, 1− r], (16)

r ∈ [0, 1], (17)
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Figure 3: A tetrahedron.
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where (a, d, g) = (x1 − x0, y1 − y0, z1 − z0), (b, e, h) = (x2 − x0, y2 − y0, z2 − z0),
and (c, f, k) = (x3 − x0, y3 − y0, z3 − z0).

As earlier, integration is performed with substitution,

∫

T

f(x, y, z) dx dy dz =

∫ 1

0

∫ 1−r

0

∫ 1−r−s

0

f(x(r, s, t), y(r, s, t), z(r, s, t)) D dt ds dr,

where D is the determinant of,





a b c
d e f
g h k



 .

Software Component: Tetrahedron The class Tetrahedron implements a
general tetrahedron. It is defined as follows (see Polygon.h):

class Tetrahedron : public Polygon {
public:
Tetrahedron(string subscript) {}
Tetrahedron(ex x0, ex x1, ex x1, ex x2, string subscript = "");
~Tetrahedron(){}

virtual int no_vertices();
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virtual ex vertex(int i);
virtual Line line(int i);
virtual Triangle triangle(int i);
virtual ex repr();
virtual string str();
virtual ex integrate(ex f);

};

The function repr returns a list representing (12) –(17). In addition to the usual
functions it has the functions line(int i) and triangle(int i) for returning the
i’th line and the i’th triangle, respectively.

Its basic usage is as follows (see tetrahedron ex1.cpp),

ex p0 = lst(0.0,0.0,0.0);
ex p1 = lst(1.0,0.0,0.0);
ex p2 = lst(0.0,1.0,0.0);
ex p3 = lst(0.0,0.0,1.0);

Tetrahedron tetrahedron(p0,p1,p2,p3);

ex repr = tetrahedron.repr();
cout <<"t.repr "<<repr<<endl;
EQUAL_OR_DIE(repr, "{x==r,y==s,z==t,{r,0,1},{s,0,1-r},{t,0,1-s-r}}");

ex f = x*y*z;
ex intf = tetrahedron.integrate(f);
EQUAL_OR_DIE(intf, "1/720");

3.2.4 Rectangle

The rectangles currently supported by SyFi are orthogonal. Such a rectangle is
defined in terms of two points x0 and x1, as shown in Figure 4.

The rectangle can be represented as

x = x0 + ar, (18)

y = y0 + bs, (19)

z = z0 + ct, (20)

r ∈ [0, 1], (21)

s ∈ [0, 1], (22)

t ∈ [0, 1], (23)

where a = x1 − x0, b = y1 − y0, and c = z1 − z0. Notice that either a, b, or c
needs to be zero, or else (18)-(23) defines a box (which will be described later).

As earlier, integration is performed with substitution,
∫

R

f(x, y, z) dx dy dz =

∫ 1

0

∫ 1

0

∫ 1

0

f(x(r, s, t), y(r, s, t), z(r, s, t)) D dt ds dr,

where D = ab if c = 0, D = bc, if a = 0, and D = ac, if b = 0.
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Figure 4: A rectangle.
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Software Component: Rectangle The class Rectangle implements a gen-
eral orthogonal rectangle. It is defined as follows (see Polygon.h):

class Rectangle : public Polygon {
public:
Rectangle(GiNaC::ex p0, GiNaC::ex p1, string subscript = "");
Rectangle() {}
virtual ~Rectangle(){}

virtual int no_vertices();
virtual GiNaC::ex vertex(int i);
virtual Line line(int i);
virtual GiNaC::ex repr(Repr_format format = SUBS_PERFORMED);
virtual string str();
virtual GiNaC::ex integrate(GiNaC::ex f);

};

As described with the previous polygons, the function repr returns a list with the
items (18)-(23). The basic usage of the rectangle is as follows (see rectangle ex1.cpp),

ex f = x*y;

ex p0 = lst(0.0,0.0);
ex p1 = lst(1.0,1.0);

Rectangle rectangle(p0,p1);

ex repr = rectangle.repr();
cout <<"s.repr "<<repr<<endl;

ex intf = rectangle.integrate(f);
cout <<"intf "<<intf<<endl;

ex f2 = (x+1)*y*z;
p0 = lst(0.0,0.0,1.0);
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p1 = lst(0.0,1.0,0.0);

Rectangle rectangle2(p0,p1);

ex repr2 = rectangle2.repr();
cout <<"s2.repr "<<repr2<<endl;

ex intf2 = rectangle2.integrate(f2);
cout <<"intf2 "<<intf2<<endl;

3.2.5 Box

Currently, SyFi only supports orthogonal boxes (as was also the case with rect-
angles). Such a box is defined in terms of two points x0 and x1, as can be seen
in Figure 5. The box can be represented as

x = x0 + ar, (24)

y = y0 + bs, (25)

z = z0 + ct, (26)

r ∈ [0, 1], (27)

s ∈ [0, 1], (28)

t ∈ [0, 1], (29)

where a = x1 − x0, b = y1 − y0, and c = z1 − z0.
As earlier, integration is performed with substitution,

∫

R

f(x, y, z) dx dy dz =

∫ 1

0

∫ 1

0

∫ 1

0

f(x(r, s, t), y(r, s, t), z(r, s, t)) D dt ds dr,

where D = abc.

Software Component: Box The class Box implements a general orthogonal
box. It is defined as follows (see Polygon.h):

class Box: public Polygon {
public:
Box(GiNaC::ex p0, GiNaC::ex p1, string subscript = "");
Box(){}
virtual ~Box(){}

virtual int no_vertices();
virtual GiNaC::ex vertex(int i);
virtual Line line(int i);
virtual GiNaC::ex repr(Repr_format format = SUBS_PERFORMED);
virtual string str();
virtual GiNaC::ex integrate(GiNaC::ex f);

};

The repr function returns a list of the definition of a orthogonal box in (24)-(29).
A box can be used as follows (see box ex1.cpp),
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Figure 5: A Box.

(x0, y0, z0)

(x1, y1, z1)

ex p0 = lst(-1.0,-1.0,-1.0);
ex p1 = lst( 1.0, 1.0, 1.0);

Box box(p0,p1);

ex repr = box.repr();
cout <<"b.repr "<<repr<<endl;

ex intf = box.integrate(f);
cout <<"intf "<<intf<<endl;

Finally, we also mention that in addition to the above mentioned classes,
Line, Triangle, Tetrahedron, Rectangle, and Box, we have implemented the corre-
sponding reference geometries in the subclasses ReferenceLine, ReferenceTriangle,
ReferenceTetrahedron, ReferenceRectangle, and ReferenceBox.

3.3 Polynomial Spaces

The space of polynomials of degree less or equal to n, Pn, plays a fundamental
role in the construction of finite elements. There are many ways to represent
this polynomial space. The perhaps visually nicest representation is having
it spanned by the basis (in 1D) {1, x, x2, . . . , xn}. This representation is not
suitable for polynomials of high degree1.

1In that case, one should use the Bernstein or Legendre polynomials.
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In 1D, Pn is spanned by functions on the form

v = a0 + a1x + . . . anxn =

n
∑

i=0

aix
i (30)

In 2D on triangles, Pn is spanned by functions on the form:

v =

i+j<=n
∑

i,j=0

aijx
iyj (31)

In 2D on quadrilaterals, Pn is spanned by functions on the form:

v =

i,j<=n
∑

i,j=0

aijx
iyj (32)

The corresponding polynomial spaces in 3D are completely analogous.

Software Component: Polynomial Space The following functions gener-
ate symbolic expressions for the above polynomial spaces (30), (31), and (32),
their corresponding polynomial spaces in 3D and their vector counterparts.

// generates a polynomial of any order on a line, a triangle, or a tetrahedron
ex pol(int order, int nsd, const string a);

// generates a vector polynomial of any order on a line, a triangle or a tetrahedron
lst polv(int order, int nsd, const string a);

// generates a polynomial of any order on a square or a box
ex polb(int order, int nsd, const string a);

// generates a vector polynomial of any order on a square or a box
lst polbv(int order, int nsd, const string a);

The function pol returns a list with the following 3 items,

1. The polynom, e.g., a0 + a1x + . . . + anxn in 1D.

2. A list of variables, e.g., {a0, a1, . . . , an} in 1D.

3. A list containing the basis, e.g., {1, x, . . . , xn} in 1D.

The functions polb, polv, and polbv return lists that are completely analogous.
These abstract polynomials (or polynomial spaces) can be easily manipu-

lated, e.g., (see also pol.cpp),

int order = 2;
int nsd = 2;

ex polynom_space = pol(order,nsd, "a");
cout <<"polynom_space "<<polynom_space<<endl;

ex p = polynom_space.op(0);
cout <<"polynom p = "<<p<<endl;
EQUAL_OR_DIE(p,"y^2*a5+x^2*a3+a2*y+y*x*a4+a0+a1*x");
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ex dpdx = diff(p,x);
cout <<"dpdx = "<<dpdx<<endl;
EQUAL_OR_DIE(dpdx, "y*a4+a1+2*x*a3");

Triangle triangle(lst(0,0), lst(1,0), lst(0,1));
ex intp = triangle.integrate(p);
cout <<"integral of p over reference triangle = "<<intp<<endl;
EQUAL_OR_DIE(intp, "1/6*a2+1/6*a1+1/12*a5+1/2*a0+1/24*a4+1/12*a3");

3.3.1 Bernstein Polynomials

Another basis for Pn is the Bernstein polynomials. This basis is much better
suited for polynomials of high degree. Moreover, these polynomials can be easily
expressed in barycentric coordinates, which makes them easy to adapt to, e.g.,
faces of polygons2 etc.

In 1D, the polynomial basis is on the form,

Bi,n =

(

i

n

)

xi(1 − x)n−i, i = 0, . . . , n.

And with this basis, Pn can be spanned by functions on the form,

v = a0B0,n + a1B1,n + . . . anBn,n.

One reason for the widespread use of these polynomials is that they adapt easily
to general triangles and tetrahedra, by using barycentric coordinates. Let b1,
b2, and b3 be the barycentric coordinates for the triangle shown in Figure 2.
Then the basis is on the form,

Bi,j,k,n =
n!

i!j!k!
bi
1b

j
2b

k
3 , for i + j + k = n.

and Pn is spanned by functions on the form,

v =
∑

i+j+k=n

ai,j,kBi,j,k,n.

The Bernstein polynomials in 3D are completely analogous.

Software Components: Bernstein polynomials The following functions
generate symbolic expressions for P

n using the Bernstein basis,

// polynom of arbitrary order on a line, a triangle,
// or a tetrahedron using the Bernstein basis
ex bernstein(int order, Polygon& p, const string a);

// vector polynom of arbitrary order on a line, a triangle,
// or a tetrahedron using the Bernstein basis
lst bernsteinv(int order, Polygon& p, const string a);

2This will be used in the definition of the Raviart-Thomas element.
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These functions return lists that are analogous to the lists made by the functions
pol and polv described on page 15.

As described earlier, GiNaC has the tools for manipulating these polynomial
spaces, (see also pol.cpp)

ex polynom_space2 = bernstein(order,triangle, "a");
ex p2 = polynom_space2.op(0);
cout <<"polynom p2 = "<<p2<<endl;
EQUAL_OR_DIE(p2, "y^2*a0+2*(1-y-x)*x*a4+2*(1-y-x)*a3*y+(1-y-x)^2*a5+2*a1*y*x+a2*x^2");

ex dp2dx = diff(p2,x);
cout <<"dp2dx = "<<dp2dx<<endl;
EQUAL_OR_DIE(dp2dx, "2*a1*y+2*(-1+y+x)*a5+2*a2*x+2*(1-y-x)*a4-2*a3*y-2*x*a4");

ex intp2 = triangle.integrate(p2);
cout <<"integral of p2 over reference triangle = "<<intp<<endl;
EQUAL_OR_DIE(intp2, "1/12*a3+1/12*a2+1/12*a1+1/12*a5+1/12*a0+1/12*a4");

3.3.2 Legendre Polynomials

A popular polynomial basis for polygons that are either rectangles or boxes are
the Legendre polynomials. This polynomial basis is also usable to represent
polynomials of high degree. The basis is defined on the interval [−1, 1], as

Lk(x) =
1

2kk!

dk

dxk
(x2 − 1), k = 0, 1, . . . ,

A nice feature with these polynomials is that they are orthogonal with respect
to the L2 inner product, i.e.,

∫ 1

−1

Lk(x)Ll(x) dx =

{

2
2k+1 , k = l,

0, k 6= l,

The Legendre polynomials are extended to 2D and 3D simply by taking the
tensor product,

Lk,l,m(x, y, z) = Lk(x)Ll(y)Lm(z).

and P
n is defined by functions on the form (in 3D),

v =

k,l,m<=n
∑

k,l,m=0

ak,l,mLk,l,m.

Software Components: Legendre polynomials The following functions
generate symbolic expressions for P

n using the Legendre basis,

// generates a Legendre polynom of arbitrary order
GiNaC::ex legendre(int order, int nsd, const string a);
// generates a Legendre vector polynom of arbitrary order
GiNaC::lst legendrev(int no_fields, int order, int nsd, const string a);

These functions return lists that are analogous to the lists made by the functions
pol and polv described on page 15.

The following code demonstrates the use of the Legendre polynomials, and
(when runned) that the basis is orthogonal (see also legendre.cpp).
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int order = 2;
int nsd = 2;

ex polynom_space = legendre(order,nsd, "a");
cout <<"polynom_space "<<polynom_space<<endl;

ex p = polynom_space.op(0);
cout <<"polynom p = "<<p<<endl;

ex dpdx = diff(p,x);
cout <<"dpdx = "<<dpdx<<endl;

ex p0 = lst(-1,-1);
ex p1 = lst(1,1);

Rectangle rectangle(p0,p1) ;
ex basis = polynom_space.op(2);
for (int i=0; i< basis.nops(); i++) {

cout <<"i "<<i<<endl;
ex integrand = p*basis.op(i);
ex ai = rectangle.integrate(integrand);
cout <<"ai "<<ai<<endl;

}

3.3.3 Homogeneous Polynomials

Another set of polynomials which sometimes are useful are the set of homoge-
neous polynomials H

n. These are polynomials where all terms have the same
degree. H

n is in 2D spanned by polynomials on the form:

v =
∑

i, j,

i + j = n

ai,j,kxiyj

Software Components: Homogeneous polynomials The following func-
tions generate symbolic expressions for H

n,

// generates a homogeneous polynom of arbitrary order
GiNaC::ex homogenous_pol(int order, int nsd, const string a);
// generates a homogenous vector polynom of arbitrary order
GiNaC::lst homogenous_polv(int no_fields, int order, int nsd, const string a);

The use of these polynomials are similar to the other polynomials described
earlier.

3.4 A Finite Element

Before we start describing how to construct a finite element based on the Defini-
tion 3.1, we will concentrate on the usage of a finite element. A finite element has
only two interesting components, the basis functions {Ni} and the correspond-
ing degrees of freedom {Li}. The basis functions (and their derivatives) are used
to compute the element matrices and the element vectors, while the degrees of
freedom are used to define the mapping between the element matrices/vectors
and the global matrix/vector. As we see in the following, the observation that
only these two components are needed leads us to a minimalistic definition of a
finite element in our software tools.
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Software Component: Finite Element Due to the powerful expression
class in GiNaC, ex, our base class for the finite elements can be very small.
Both the basis function Ni and the corresponding degree of freedom Li can be
well represented as an ex. Hence, the following definition of a finite element is
suitable,

class FE {
public:
FE() {}
~FE() {}

virtual void set(Polygon& p); // Set polygonal domain
virtual Polygon& getPolygon(); // Get polygonal domain
virtual ex N(int i); // The i’th basis function
virtual ex dof(int i); // The i’th degree of freedom
virtual int nbf(); // The number of basis functions/

// degrees of freedom
};

The usage of a finite element is as follows (see fe ex1.cpp where Lagrangian
elements are used),

ex Ni;
ex gradNi;
ex dofi;
for (int i=0; i< fe.nbf(); i++) {

Ni = fe.N(i);
gradNi = grad(Ni);
dofi = fe.dof(i);
cout <<"The basis function, N("<<i<<")="<<Ni<<endl;
cout <<"The gradient of N("<<i<<")="<<gradNi<<endl;
cout <<"The corresponding dof, L("<<i<<")="<<dofi<<endl;

}

When you run fe ex1, it produces the following output:

The basis function, N(1)=2*y^2-y
The gradient of N(1)=[[0],[-1+4*y]]
The corresponding dof, L(1)={0,1}
The basis function, N(2)=4*y*x
The gradient of N(2)=[[4*y],[4*x]]
The corresponding dof, L(2)={1/2,1/2}
The basis function, N(3)=2*x^2-x
The gradient of N(3)=[[-1+4*x],[0]]
The corresponding dof, L(3)={1,0}
The basis function, N(4)=-4*y*x-4*y^2+4*y
The gradient of N(4)=[[-4*y],[4-8*y-4*x]]
The corresponding dof, L(4)={0,1/2}
The basis function, N(5)=-4*y*x-4*x^2+4*x
The gradient of N(5)=[[4-4*y-8*x],[-4*x]]
The corresponding dof, L(5)={1/2,0}
The basis function, N(6)=1+4*y*x+2*x^2+2*y^2-3*y-3*x
The gradient of N(6)=[[-3+4*y+4*x],[-3+4*y+4*x]]
The corresponding dof, L(6)={0,0}

The computation of the element matrix for a Poisson problem is as follows (see
fe ex2.cpp),

Triangle T(lst(0,0), lst(1,0), lst(0,1), "t");
int order = 2;

std::map<std::pair<int,int>, ex> A;
std::pair<int,int> index;
LagrangeFE fe;
fe.set(order);
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fe.set(T);
fe.compute_basis_functions();
for (int i=0; i< fe.nbf(); i++) {

index.first = i;
for (int j=0; j< fe.nbf(); j++) {
index.second = j;
ex nabla = inner(grad(fe.N(i)), grad(fe.N(j)));
ex Aij = T.integrate(nabla);
A[index] = Aij;

}
}

Here, we have used the class LagrangeFE, which is a subclass of FE, that imple-
ments Lagrangian elements of arbitrary order. The construction of this element
is described later in Section 4.1.1.

3.5 Degrees of Freedom

As we have seen earlier, for each element e, we have a local set of degrees
of freedom {Le

i}, which in general are linear forms on the polynomial space.
Degrees of freedom and linear forms are quite general concepts, but the reader
not familiar with this general definition can think of them for instance as nodal
values at vertices, i.e.,

Li(v) = v(xi).

Another example is the integral of v over an edge (or a face), ei, of the polygon,

Li(v) =

∫

ei

v ds.

The most important thing with the degrees of freedom, besides defining
a basis for the polynomial space, is that they provide a mapping from the
local degree of freedom, Le

i , on a given element, e, to the global degree of
freedom, Lj . This mapping does in turn provide the mapping between the
element matrices/vectors and the global matrix/vector. Hence, we have the
following mapping,

(e, i) → Le
i → Lj → j. (33)

Here e, i, and j are integers, while Le
i and Lj are degrees of freedom (or linear

forms). Additionally, given a global degree of freedom we have a mapping to
the local degrees of freedom,

j → Lj → {Le
i(e)}e∈E(j) → {(e, i(e))}e∈E(j). (34)

Here E(j) is the set of elements sharing the degree of freedom Lj .

Software Component: Degrees of Freedom Handler A degree of free-
dom, local or global, is well represented as an ex (in fact ex is more general
than a linear form). Hence, to implement proper tools for handling the degrees
of freedom, we only need to provide the mappings (33) and (34). We have
implemented a class Dof which provides these mappings,
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class Dof {
protected:
int counter;
// the structures loc2dof, dof2index, and doc2loc are completely dynamic
// they are all initialized and updated by insert_dof(int e, int d, ex dof)

// (int e, int i) -> ex Li
map<pair<int,int>, ex> loc2dof;
// (ex Lj) -> int j
map<ex,int,ex_is_less> dof2index;
// (int j) -> ex Lj
map<int,ex> index2dof;
// (ex Lj) -> vector< pair<e1, i1>, .. pair<en, in> >
map <ex, vector<pair<int,int> >,ex_is_less > dof2loc;

public:
Dof() { counter = 0; }
~Dof() {}
int insert_dof(int e, int j, ex Lj); // to update the internal structures

// Helper functions to be used when the dofs have been set.
// These do not modify the internal structure
int glob_dof(int e, int j);
int glob_dof(ex Lj);
ex glob_dof(int j);
int size();
vector<pair<int, int> > glob2loc(int j);
void clear();

};

Here, the function int insert dof(int e, int i, ex Li) creates the various map-
pings between the local dof Le

i , in element e, and the global dof Lj . This is the
only function for initializing the mappings. After the mappings have been ini-
tialized, they can be used as follows,

• int glob dof(int e, int i) is the mapping (e, i) → j,

• int glob dof(ex Lj) is the mapping Lj → j,

• ex glob dof(int j) is the mapping j → Lj ,

• vector<pair<int, int> > glob2loc(int j) is the mapping j → {(e, i(e))}.
The following code shows how to make two Lagrangian elements, implemented
by the class LagrangeFE (The description of LagrangeFE is postponed until Sec-
tion sec:fem:examples), assign their local degrees of freedom to the global set of
degrees of freedom in Dof, and print out the local degrees of freedom associated
with each global degree of freedom (see also dof ex.cpp):

Dof dof;

Triangle t1(lst(0,0), lst(1,0), lst(0,1));
Triangle t2(lst(1,1), lst(1,0), lst(0,1));

// Create a finite element and corresponding
// degrees of freedom on the first triangle
int order = 2;
LagrangeFE fe;
fe.set(order);
fe.set(t1);
fe.compute_basis_functions();
for (int i=0; i< fe.nbf(); i++) {
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cout <<"fe.dof("<<i<<")= "<<fe.dof(i)<<endl;
// insert local dof in global set of dofs
dof.insert_dof(1,i, fe.dof(i));

}

// Create a finite element and corresponding
// degrees of freedom on the second triangle
fe.set(t2);
fe.compute_basis_functions();
for (int i=0; i< fe.nbf(); i++) {

cout <<"fe.dof("<<i<<")= "<<fe.dof(i)<<endl;
// insert local dof in global set of dofs
dof.insert_dof(2,i, fe.dof(i));

}

// Print out the global degrees of freedom an their
// corresponding local degrees of freedom
vector<pair<int,int> > vec;
pair<int,int> index;
ex exdof;
for (int i=1; i<= dof.size(); i++) {

exdof = dof.glob_dof(i);
vec = dof.glob2loc(i);
cout <<"global dof " <<i<<" dof "<<exdof<<endl;
for (int j=0; j<vec.size(); j++) {
index = vec[j];
cout <<" element "<<index.first<<" local dof "<<index.second<<endl;

}
}

In the previous example, the reader that also runs the companion code will
notice that the degrees of freedom in LagrangeFE are not linear forms on poly-
nomial spaces, i.e.,

Li(v) = v(xi).

They are instead represented as points, xi, which is the usual way to represent
these degrees of freedom in finite element software (because of their obvious
simplicity compared to linear forms on polynomial spaces). Hence, the degrees
of freedom in LagrangeFE are actually implemented in the standard fashion.
However, the tools we have described are far more general than conventional
finite element codes. Still the tools are equally simple to use, due to the powerful
expression class ex in GiNaC.

Our next example concerns degrees of freedom which are line integrals over
the edges of triangles. Let T be a triangle with the edges ei, i ∈ [1, 3]. The
degree of freedom associated with ei is then simply,

Li(v) =

∫

ei

v ds.

As our next example shows, such degrees of freedom can be implemented equally
easy as the point values shown in the previous example (see dof ex2.cpp):

Dof dof;

// create two triangles
Triangle t1(lst(0,0), lst(1,0), lst(0,1));
Triangle t2(lst(1,1), lst(1,0), lst(0,1));

// create the polynomial space
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ex Nj = pol(1,2,"a");
cout <<"Nj " <<Nj<<endl;
Line line;
ex dofi;

// dofs on first triangle
for (int i=1; i<= 3; i++) {

line = t1.line(i); // pick out the i’th line
dofi = line.integrate(Nj); // create the dof which is a line integral
dof.insert_dof(1,i, dofi); // insert local dof in global set of dofs

}

// dofs on second triangle
for (int i=1; i<= 3; i++) {

line = t2.line(i); // pick out the i’th line
dofi = line.integrate(Nj); // create the dof which is a line integral
dof.insert_dof(2,i, dofi); // insert local dof in global set of dofs

}

Software Component: Degrees of Freedom Handler Template We will
also describe an equally general degree of freedom handler which is not based
on GiNaC, but which employs templates instead. This template class relies on
two classes, the degree of freedom D and a comparison function. The rest is
basically identical to the previously described Dof, except that we have added
two boolean variables which can be used to turn off the computation of the
global to local mapping in (34) and the j → Nj mapping. This class can be
found in the header file DofT.h:

template <class D, class C>
class DofT {
protected:
bool create_index2dof, create_dof2loc;
int counter;
// the structures loc2dof, dof2index, and doc2loc are completely dynamic
// they are all initialized and updated by insert_dof(int e, int i, ex Li).

// (int e, int i) -> int j
map<pair<int,int>, int> loc2dof;
// (ex Lj) -> int j
map<D,int,C> dof2index;
typename map<D,int,C>:: iterator iter;

// (int j) -> ex Lj
map<int,D> index2dof;
// (ex j) -> vector< pair<e1, i1>, .. pair<en, in> >
map <int, vector<pair<int,int> > > dof2loc;

public:
DofT( bool create_index2dof_ = false, bool create_dof2loc_ = false ) {

counter = -1;
create_index2dof = create_index2dof_;
create_dof2loc = create_dof2loc;

}
~DofT() {}
int insert_dof(int e, int i, D Li); // to update the internal structures

// Helper functions to be used when the dofs have been set.
// These do not modify the internal structure.
int glob_dof(int e, int i);
int glob_dof(D Lj);
D glob_dof(int j);
int size();
vector<pair<int, int> > glob2loc(int j);
void clear();

};
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The typical way to represent most common degrees of freedom is as points.
Hence, we have implemented a simple point class ptv and its comparison func-
tion. The header file (see also ptv.h) is as follows:

class ptv {
private:
int dim;
double* v;
static double tol;

public:
ptv(int size_);
ptv(int size_, double* v_);
ptv(const ptv& p);
ptv();

virtual ~ptv();

const int size() const;

const double& operator [] (int i) const;
double& operator [] (int i);
ptv& operator = (const ptv& p);

bool is_less(const ptv& p) const;

};

struct ptv_is_less : public std::binary_function<ptv, ptv, bool> {
bool operator() (const ptv &lh, const ptv &rh) const { return lh.is_less(rh); }
};

std::ostream & operator<< ( std::ostream& os, const ptv& p);

The ptv class simply contain an array of doubles with variable size. The
comparison function should check whether a point x ∈ R

n is less than y ∈ R
m,

which is not necessarily obvious how to do. For instance, which is the smallest
of x1 = (1, 0) ∈ R

2, x2 = (0, 1) ∈ R
2 and x3 = (0, 0, 1) ∈ R

3 ? There
are many possible ways to compare points. The convention we have chosen so
far is to first check the size of the points. Hence, x < y, where x ∈ R

n and
y ∈ R

m, if n < m. If n = m, then x < y if x0 < y0. If x0 = y0, then x < y
if x1 < y1 and we continue in this fashion, if xj = yj , 0 ≤ j < i then x < y if
xi < yj . Notice that this comparison operator only affects the ordering of the
degrees of freedom internally in the STL map structure. But it might be that
other comparison conventions will speed up the search and insert routines in
map.

Finally, we remark that the ptv class and DofT can be used also for degrees of
freedom associated with lines, edges, faces or general polygons. For instance the
edge of a 2D triangle, between the points x0 = (x0, y0) and x1 = (x1, y1) can be
represented as a point in R

4, e.g., (x0, y0, x1, y1) if x0 < x1 and (x1, y1, x0, y0)
otherwise. Another simpler approach is to represent an edge by its midpoint.
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4 Some Examples of Finite Elements

Earlier in Section 3.4, we described the usage of a general finite element. In this
section we will show how various finite elements are constructed/implemented
in SyFi.

4.1 Finite Elements in H1

4.1.1 The Lagrangian Element

We will describe the construction of a Lagrangian element on a 2D triangle.
The actual implementation of the element in both 1D, 2D and 3D can be found
in the class LagrangeFE.

As we saw in Section 3.3, the polynomial space Pn in 2D can be written on
the form

N =

i+j<=n
∑

i,j=0

aijx
iyj .

Hence, to determine the basis functions {Nk} we simply represented them in
abstract form,

Nk =

i+j<=n
∑

i,j=0

ak
ijx

iyj .

Then the coefficients {ak
ij} are to be determined by the (n+1)(n+2)/2 degrees

of freedom that are the nodal values at the the points xi, i.e.,

Li(Nk) = Nk(xi).

Hence, we need a set of (n+1)(n+2)/2 nodal points to determine the coefficients
{ak

ij} for each basis function. We have chosen to use the Bezier ordinates. When
this is done, it is simply a matter of solving the linear system

Li(Nk) = Nk(xi) = δik,

for each basis function Nk.

Software Component: The Lagrangian Element The Lagrangian ele-
ment is implemented as a subclass of StandardFE. The class definition is:

class LagrangeFE : public StandardFE {
public:
LagrangeFE() {}
virtual ~LagrangeFE() {}

virtual void set(int order);
virtual void set(Polygon& p);
virtual void compute_basis_functions();
virtual int nbf();
virtual GiNaC::ex N(int i);
virtual GiNaC::ex dof(int i);

};
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The Construction of the Lagrangian Element The Lagrangian element
of arbitrary order in 1D, 2D, and 3D, is implemented in LagrangeFE.cpp. The
following code is taken from fe ex3.cpp.

Triangle t(lst(0,0), lst(1,0), lst(0,1));
int order = 2; //second order elements
ex polynom;
lst variables;

// the polynomial spaces on the form:
// first item: a0 + a1*x + a2*y + a3*x^2 + a4*x*y ... the polynom
// second item: a0, a1, a2, ... the coefficients
// third item 1, x, y, x^2 the basis
// Could also do:
// GiNaC::ex polynom_space = bernstein(order, t, "a");
ex polynom_space = pol(order, 2, "a");
ex polynom = polynom_space.op(0);

// the variables a0,a1,a2 ..
variables = ex_to<lst>(polynom_space.op(1));

ex Nj;
// The Bezier ordinates in which the basis function should be either 0 or 1
lst points = bezier_ordinates(t,order);

// Loop over all basis functions Nj and all points.
// Each basis function Nj is determined by a set of linear equations:
// Nj(xi) = dirac(i,j)
// This system of equations is then solved by lsolve
for (int j=1; j <= points.nops(); j++) {
lst equations;
int i=0;
for (int i=1; i<= points.nops() ; i++ ) {

// The point xi
ex point = points.op(i-1);
// The equation Nj(x) = dirac(i,j)
ex eq = polynom == dirac(i,j);
// Substitute x = xi and y = yi and appended the equation
// to the list of equations
equations.append(eq.subs(lst(x == point.op(0) , y == point.op(1))));

}

// We solve the linear system
ex subs = lsolve(equations, variables);
// Substitute to get the Nj
Nj = polynom.subs(subs);
cout <<"Nj "<<Nj<<endl;

}

In this example the degrees of freedom are very simple. It is only a matter
of evaluating the function vk in the point xi (which in GiNaC is performed
by substitution). Later we will see that more advanced degrees of freedom are
readily available since we have stored the degrees of freedom as a set of exes.

4.1.2 The Crouizex-Raviart Element

The Crouizex-Raviart element is the nonconforming equivalent of linear con-
tinuous Lagrangian elements. The degrees of freedom are the values at the
midpoint of the sides, i.e.,

Li(v) = v(xm(ei)),
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where xm(ei) is the midpoint on the edge, ei. An equivalent definition of the
degrees of freedom is,

Li(v) =

∫

ei

v ds,

This is the definition we will use.

Software Component: The Crouzeix-Raviart Element The Crouzeix-
Raviart class definition is similar to class defined for the Lagrangian element:

class CrouzeixRaviart : public StandardFE {
public:
CrouzeixRaviart();
virtual ~CrouzeixRaviart() {}

void set(int order);
void set(Polygon& p);
void compute_basis_functions();
virtual int nbf();
virtual GiNaC::ex N(int i);
virtual GiNaC::ex dof(int i);

};

The Construction of the Crouzeix-Raviart Element The following code,
which is from the file CrouzeixRaviart.cpp, shows how this element can be de-
fined in 2D. The definition of the element in 3D can also be found in this file.

Triangle triangle;

// create the polynomial space
ex polynom_space = bernstein(1, triangle, "a");
ex polynom = polynom_space.op(0);
ex variables = polynom_space.op(1);
ex basis = polynom_space.op(2);

// create the dofs
int counter = 0;
symbol t("t");
for (int i=1; i<= 3; i++) {
Line line = triangle.line(i);
ex dofi = line.integrate(polynom);
dofs.insert(dofs.end(),dofi);

}

// solve the linear system to compute
// each of the basis functions
for (int i=1; i<= 3; i++) {
lst equations;
for (int j=1; j<= 3; j++) {

equations.append(dofs[j-1] == dirac(i,j));
}
ex sub = lsolve(equations, variables);
ex Ni = polynom.subs(sub);
Ns.insert(Ns.end(),Ni);

}

This element can be used in a standard fashion, (see also crouzeixraviart ex.cpp),

CrouzeixRaviart fe;
fe.set(1);
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Figure 6: Some triangles with the common vertex V.
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fe.set(p);
fe.compute_basis_functions();
for (int i=0; i< fe.nbf(); i++) {

cout <<"fe.N("<<i<<")="<<fe.N(i)<<endl;
}

See also the Python implementation of this element in Section 7.

4.2 Finite Elements in L2

4.2.1 The P0 Element

The P0 element consists of piecewise constants, i.e.,

v|T = 1,

where T is the polygon. This element is discontinuous across elements.

Software Component: The P0 Element The P0 element is implemented
in the class P0. The implementation is straightforward.

4.2.2 The Discontinuous Lagrangian Element

The discontinuous Lagrangian elements are similar to the continuous Lagrangian
elements except for the fact that they are discontinuous. Hence, locally on the
polygon T , the basis functions are the same. The difference is that discontinuous
Lagrangian elements are not continuous between elements.

To exemplify this we consider the continuous and the discontinuous linear
Lagrangian elements in 2D. In Figure 6 we see that the triangles 1, . . . , 5 all
share the common vertex V . For continuous Lagrangian elements, this means
that there will be only one degree of freedom associated with V . On the other
hand, for discontinuous Lagrangian elements, there will be one degree of freedom
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associated with V per triangle. Hence, in the concrete case depictured in Figure
6, there will be 5 degrees of freedom associated with V . Each degree of freedom
is associated with a basis function which is 1 in V , 0 in the other vertices, and
zero outside the triangle.

Software Component: The discontinuous Lagrangian element The
implementation of the discontinuous Lagrangian element is really easy because
this element is identical to the continuous Lagrangian element locally. Hence,
the basis functions on each element is the same. We only need to modify the
degrees of freedom.

The degrees of freedom for the discontinuous Lagrangian elements are such
that for each element, each degree of freedom is new. Hence, none of degrees of
freedom are shared among elements. It is fairly easy to implement this. Assume
that the polygons in the mesh or the elements in the finite element space are
numbered. Then the degree of freedom can be represented by both the vertex
xi and the element number e associated with the polygon Te,

Le
i (v) = v|Te

(xi),

where v|Te
means the restriction of v to the polygon Te. It is important to take

the restriction to Te since v is in general discontinuous in xi.
We have implemented the discontinuous Lagrangian element as a subclass

of the continuous Lagrangian element, with an additional integer parameter
element which is the element number. The class declaration is as follows,

class DiscontinuousLagrangeFE : public LagrangeFE{
int element;
public:
DiscontinuousLagrangeFE();
~DiscontinuousLagrangeFE() {}

virtual void set(int order);
virtual void set_element_number(int element);
virtual void set(Polygon& p);
virtual void compute_basis_functions();
virtual int nbf();
virtual GiNaC::ex N(int i);
virtual GiNaC::ex dof(int i);

};

Earlier, the degrees of freedom for continuous Lagrangian elements were
represented as vertices or points (instead of linear forms), as is usual in finite
element codes. We do the same simplification here, and store the degrees of
freedom as (xi, e), where xi is the vertex/point and e is the element number as-
sociated with Te. This is implemented in the functions compute basis functions:

void DiscontinuousLagrangeFE:: compute_basis_functions() {
LagrangeFE:: compute_basis_functions();
for (int i=0; i< dofs.size(); i++) {

dofs[i] = lst(dofs[i], element);
}

}

The usage is standard (see disconlagrange ex.cpp),
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Dof dof;
// create two triangles
Triangle t1(lst(0,0), lst(1,0), lst(0,1));
Triangle t2(lst(1,1), lst(1,0), lst(0,1));

int order = 2;

DiscontinuousLagrangeFE fe;
fe.set(order);
fe.set(t1);
fe.set_element_number(1);
fe.compute_basis_functions();
usage(fe);
for (int i=0; i< fe.nbf(); i++) {

dof.insert_dof(1,i,fe.dof(i));
}

fe.set(t2);
fe.set_element_number(2);
fe.compute_basis_functions();
usage(fe);
for (int i=0; i< fe.nbf(); i++) {

dof.insert_dof(2,i,fe.dof(i));
}

// Print out the global degrees of freedom an their
// corresponding local degrees of freedom
vector<pair<int,int> > vec;
pair<int,int> index;
ex exdof;
for (int i=1; i<= dof.size(); i++) {

exdof = dof.glob_dof(i);
vec = dof.glob2loc(i);
cout <<"global dof " <<i<<" dof "<<exdof<<endl;
for (int j=0; j<vec.size(); j++) {
index = vec[j];
cout <<" element "<<index.first<<" local dof "<<index.second<<endl;

}
}

When this program (disconlagrange) runs, it prints out 12 degrees of freedom
in contrast to 9 which it would be for continuous Lagrangian elements.

4.3 Finite Elements in H(div)

4.3.1 The Raviart-Thomas Element

The family of Raviart-Thomas elements is popular when considering the mixed
formulation of elliptic problems. In this case the polynomial space is not P

d
n,

but
P

d
n + xPn. (35)

And the degrees of freedom are,

∫

ei

v · n pk ds, ∀pk ∈ Pk(ei), (36)

∫

T

v · pk−1 dx, ∀pk−1 ∈ P
d
k−1(T ), (37)
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where T is the polygon domain and ei is its edges (in 2D) or faces (in 3D).
Degrees of freedom which are integrals have been dealt with already for the
Crouizex-Raviart element in Section 4.1.2. Hence, there are mainly two new
concepts we need to deal with to implement this element. It is the polynomial
space, which is on the form (35), and the polynomial spaces on faces or edges
of the polygon, as in (36). Both concepts will be dealt with below.

Software Component: The Raviart-Thomas Element Notice that for
the previously defined Lagrangian and Crouizex-Raviart elements, the basis
functions were scalar functions. The basis functions of the Raviart-Thomas ele-
ments are vector functions, but still, thanks to the general ex class, the Raviart-
Thomas element class can be defined in the same way as earlier. The class
definition is:

class RaviartThomas : public StandardFE {
public:
RaviartThomas() {}
virtual ~RaviartThomas() {}

virtual void set(int order);
virtual void set(Polygon& p);
virtual void compute_basis_functions();
virtual int nbf();
virtual GiNaC::ex N(int i);
virtual GiNaC::ex dof(int i);

};

The Construction of the Raviart-Thomas Element First, we described
how to make the polynomial space (35). The polynomial spaces, Pn(T ) and
P

d
n(T ) on a polygonal domain, can be made by the functions bernstein and

bernsteinv, respectively. However, we can not just add the spaces P
d
n(T ) and

xPn(T ) together. Because, some of the basis functions are the same in both
space, while others are not. Consider for instance P

d
1(T ), which has the basis

functions,

{(0, 1)T , (1, 0)T , (x, 0)T , (0, x)T , (y, 0)T , (0, y)T }
while xP1(K) has the following basis functions

{(x, 0)T , (x2, 0)T , (xy)T , (0, y)T , (0, y2)T , (0, xy)T }.
Hence (x, 0)T and (0, y)T are common.

The way we solve this problem is that we create the two spaces P
d
n(T ) and

xPn(T ) independently. We then have two polynomial spaces, each with two
independent sets of variables (or degrees of freedom). The variables associated
with a basis in xPn(T ) which is also a basis in P

d
n(T ) is then removed. This is

done by removing all variables associated with basis functions that have degree
less than n− 1 in Pn from xPn(T ). This is done as follows in 2D (both 2D and
3D elements of arbitrary order are implemented in RaviartThomas.cpp),

Triangle& triangle = (Triangle&)(*p);
lst equations;
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lst variables;
ex polynom_space1 = bernstein(order-1, triangle, "a");
ex polynom1 = polynom_space1.op(0);
ex polynom1_vars = polynom_space1.op(1);
ex polynom1_basis = polynom_space1.op(2);

lst polynom_space2 = bernsteinv(order-1, triangle, "b");
ex polynom2 = polynom_space2.op(0).op(0);
ex polynom3 = polynom_space2.op(0).op(1);

lst pspace = lst( polynom2 + polynom1*x,
polynom3 + polynom1*y);

// remove multiple dofs
if ( order >= 2) {
ex expanded_pol = expand(polynom1);
for (int c1=0; c1<= order-2;c1++) {

for (int c2=0; c2<= order-2;c2++) {
for (int c3=0; c3<= order-2;c3++) {
if ( c1 + c2 + c3 <= order -2 ) {

ex eq = expanded_pol.coeff(x,c1).coeff(y,c2).coeff(z,c3);
if ( eq != numeric(0) ) {
equations.append(eq == 0);

}
}

}
}

}
}

Second, we described how to implement the degrees of freedom (36)-(37).
The degrees of freedom associated with the edges,

∫

ei

v · n pk ds, ∀pk ∈ Pk(ei),

are implemented as follows (Notice that the polynomial space on the edges of
the triangle is made by creating Bernstein polynomials in standard fashion).

ex bernstein_pol;

int counter = 0;
symbol t("t");
ex dofi;
// loop over all edges
for (int i=1; i<= 3; i++) {
Line line = triangle.line(i);
lst normal_vec = normal(triangle, i);
bernstein_pol = bernstein(order-1, line, istr("a",i));
ex basis_space = bernstein_pol.op(2);
ex pspace_n = inner(pspace, normal_vec);

// loop over all basis functions on current edge
ex basis;
for (int i=0; i< basis_space.nops(); i++) {

counter++;
basis = basis_space.op(i);
ex integrand = pspace_n*basis;
dofi = line.integrate(integrand);
dofs.insert(dofs.end(), dofi);
ex eq = dofi == numeric(0);
equations.append(eq);

}
}
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The degrees of freedom associated with the whole triangle,

∫

T

v · pk−1 dx, ∀pk−1 ∈ P
d
k−1(T ),

is implemented as

// dofs related to the whole triangle
lst bernstein_polv;
if ( order > 1) {
counter++;
bernstein_polv = bernsteinv(order-2, triangle, "a");
ex basis_space = bernstein_polv.op(2);
for (int i=0; i< basis_space.nops(); i++) {

lst basis = ex_to<lst>(basis_space.op(i));
ex integrand = inner(pspace, basis);
dofi = triangle.integrate(integrand);
dofs.insert(dofs.end(), dofi);
ex eq = dofi == numeric(0);
equations.append(eq);

}
}

In the above code we have formed the linear system,

Li(v) = 0

To compute the different vj we then produce different right hand sides corre-
sponding to δij and solve the system. How this is done can be seen in the
RaviartThomas.cpp.

4.4 Finite Elements in H(curl)

4.4.1 The Nedelec Element

In electromagnetic applications, the family of Nedelec elements are very com-
mon. As was also the case with the Raviart-Thomas elements, P

n is not the
most convenient space to define the basis functions. Instead, we will use

P
d
n−1 + Ĥ

k, (38)

where
Ĥ

k = {h ∈ H
d
k : h · x = 0}

and H is the space of homogenous polynomials described in Section 3.3.3. The
degrees of freedom that defines the Nedelec elements are (in 2D),

∫

e

t · up dx, ∀p ∈ Pk−1(e), (39)

∫

T

u · p dx, ∀p ∈ P
n
k−2(T ). (40)
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Software Component: The Nedelec Element The Nedelec element class
definition is similar to the previous element definitions.

class Nedelec : public StandardFE {
public:
Nedelec() {}
virtual ~Nedelec() {}

virtual void set(int order);
virtual void set(Polygon& p);
virtual void compute_basis_functions();
virtual int nbf();
virtual GiNaC::ex N(int i);
virtual GiNaC::ex dof(int i);

};

The Construction of the Nedelec Element The Nedelec element of arbi-
trary order in both 2D and 3D is implemented in Nedelec.cpp. Here we will for
simplicity describe how the element is implemented in 2D.

We first consider the polynomial space (38),

// create r
GiNaC::ex R_k = homogenous_polv(2,k+1, 2, "a");
GiNaC::ex R_k_x = R_k.op(0).op(0);
GiNaC::ex R_k_y = R_k.op(0).op(1);

// Equations that make sure that r*x = 0
GiNaC::ex rx = (R_k_x*x + R_k_y*y).expand();
ex_ex_map pol_map = pol2basisandcoeff(rx);
ex_ex_it iter;
for (iter = pol_map.begin(); iter != pol_map.end(); iter++) {
if ((*iter).second != 0 ) {

equations.append((*iter).second == 0 );
removed_dofs++;

}
}

The degree of freedom associated with the edges (39) are implemented as,

GiNaC::ex dofi;
// dofs related to edges
for (int i=1; i<= 3; i++) {
Line line = triangle.line(i);
GiNaC::lst tangent_vec = tangent(triangle, i);
GiNaC::ex bernstein_pol = bernstein(order, line, istr("a",i));
GiNaC::ex basis_space = bernstein_pol.op(2);
GiNaC::ex pspace_t = inner(pspace, tangent_vec);

GiNaC::ex basis;
for (int j=0; j< basis_space.nops(); j++) {

counter++;
basis = basis_space.op(j);
GiNaC::ex integrand = pspace_t*basis;
dofi = line.integrate(integrand);
dofs.insert(dofs.end(), dofi);
GiNaC::ex eq = dofi == GiNaC::numeric(0);
equations.append(eq);

}
}

The degree of freedom associated with whole triangle (40) are implemented
as,
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// dofs related to the whole triangle
GiNaC::lst bernstein_polv;
if ( order > 0) {
counter++;
bernstein_polv = bernsteinv(2,order-1, triangle, "a");
GiNaC::ex basis_space = bernstein_polv.op(2);
for (int i=0; i< basis_space.nops(); i++) {

GiNaC::lst basis = GiNaC::ex_to<GiNaC::lst>(basis_space.op(i));
GiNaC::ex integrand = inner(pspace, basis);
dofi = triangle.integrate(integrand);
dofs.insert(dofs.end(), dofi);
GiNaC::ex eq = dofi == GiNaC::numeric(0);
equations.append(eq);

}
}

5 Mixed Finite Elements

Mixed finite element methods typically refer to discretization methods for sys-
tems of PDEs where different finite elements are used for the different unknowns.
For instance, in incompressible flow problems, one typically has (at least) two
unknowns, the velocity v and the pressure p. It is wellknown that the velocity
elements should have higher order than the pressure elements. The reasons for
this have been extensively studied the last 30 years, and we will not go into
details on this here, see e.g., Brezzi and Fortin [8] and Girault and Raviart[10].

What we will do here is to describe mixed finite elements from the pro-
grammers point of view. In this setting, we simply refer to mixed elements
as a collection of finite elements of different types on the same polygon. The
elements themselves and their implementation were discussed in the previous
section.

5.1 The Taylor–Hood and the P
d

n
− Pn−2 Elements for the

Stokes problem

The Taylor–Hood and the P
d
n − Pn−2 elements are mixed elements that are

popular for incompressible flow. The elements for both the velocity and the
pressure are of Lagrangian type, but have different order. The Taylor–Hood
element on a polygon T is,

v(T ) ∈ P
d
2 and p(T ) ∈ P1.

The Pn − Pn−2 element on a polygon T is,

v(T ) ∈ P
d
n and p(T ) ∈ Pn−2, n ≥ 2.

For n > 2 the pressure element is of Lagrangian type, while for n=2 the pres-
sure element is piecewise constant. These elements satisfy the Babuska-Brezzi
condition.

The Taylor–Hood elements can be created as follows, (see also taylorhood ex.cpp)
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VectorLagrangeFE v_fe;
v_fe.set(2);
v_fe.set_size(2);
v_fe.set(domain);
v_fe.compute_basis_functions();

LagrangeFE p_fe;
p_fe.set(1);
p_fe.set(domain);
p_fe.compute_basis_functions();

The P
d
n − Pn−2 element can be made by changing the order of the elements

with the set function.

5.2 The Mixed Crouizex-Raviart Element for the Stokes

problem

The mixed Crouizex-Raviart element is a nonconforming linear element for the
velocity and piecewise constant for the pressure. The Crouizex-Raviart element
was described in Section 4.1.2, while the P0 element was described in Section
4.2.1.

These elements can be made as follows (see also crouzeixraviart ex2.cpp)

ReferenceTriangle domain;

VectorCrouzeixRaviart v_fe;
v_fe.set_size(2);
v_fe.set(domain);
v_fe.compute_basis_functions();

P0 p_fe;
p_fe.set(domain);
p_fe.compute_basis_functions();

5.3 The Mixed Raviart-Thomas Element for the Poisson

Problem on Mixed Form

The velocity element is the Raviart-Thomas element described in Section 4.3.1.
The pressure element is discontinuous polynomials of degree n. The P0 element
is described in Section 4.2.1, while the discontinuous Pn element is described in
Section 4.2.2.

The can be made as such (see also raviartthomas ex2):

int order = 3;

ReferenceTriangle triangle("t");
RaviartThomas vfe;
vfe.set(triangle);
vfe.set(order);
vfe.compute_basis_functions();

DiscontinuousLagrangeFE pfe;
pfe.set(triangle);
pfe.set(order);
pfe.compute_basis_functions();

for (int i=0; i< vfe.nbf(); i++)
cout <<"vfe.N("<<i<<")="<<vfe.N(i)<<endl;
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for (int i=0; i< pfe.nbf(); i++)
cout <<"pfe.N("<<i<<")="<<pfe.N(i)<<endl;

6 Computing Element Matrices

Our next task is to compute element matrices. As earlier, everything will be
done symbolically. There are several reasons for doing the computations sym-
bolically:

• Everything is exact (No floating point precision issues)!

• Differentiation of the weak form with respect to the variables is possible
(Easy to compute the Jacobian for nonlinear PDEs).

• In case one uses integers and rational numbers as input (e.g., the vertices
of the polygon) one gets rational numbers as output. This enables nice
output.

• In case one uses symbols as input, one get symbols as output. Hence,
one might actually compute an abstract element matrix, where each entry
in the matrix is a function of the vertices of the polygon, x0,x1, . . . ,xn,
which are symbols. We will consider this in more detail later.

• Every step can be checked against analytic computations. We can even,
as we will see, produce output in LATEX format, for easy reading.

• In Section 8 we generate C++ code from the exactly computed element
matrices.

6.1 A Poisson Problem

The Poisson problem is on the form,

−∆u = f, in Ω,

u = h, on ∂ΩE ,

∂u

∂n
= g, on ∂ΩN ,

where ∂Ω = ∂ΩE ∪ ∂ΩN .
The weak form of the Poisson problem is (as we have already used): Find

u ∈ Vh such that
a(u, v) = b(v), ∀v ∈ V0.

where,

a(u, v) =

∫

Ω

∇u · ∇v dx,

f(v) =

∫

Ω

f v dx +

∫

ΓN

g v ds.
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and Vk = {v ∈ H1; v|∂ΩE
= k}, for k = 0, h.

From this weak form we obtain the element matrix, see e.g., Brenner and
Scott [7], Ciarlet [9], or Langtangen [11],

Aij = a(Ni, Nj) =

∫

T

∇Nj · ∇Ni dx. (41)

The computation of (41) is implemented in the function compute Poisson element matrix
in ElementComputations.cpp,

void compute_Poisson_element_matrix(
FE& fe,
Dof& dof,
std::map<std::pair<int,int>, ex>& A)

{
std::pair<int,int> index;

// Insert the local degrees of freedom into the global Dof
for (int i=0; i< fe.nbf(); i++) {

dof.insert_dof(1,i,fe.dof(i));
}

Polygon& domain = fe.getPolygon();

// The term (grad u, grad v)
for (int i=0; i< fe.nbf(); i++) {

index.first = dof.glob_dof(fe.dof(i)); // fetch the global dof for Ni
for (int j=0; j< fe.nbf(); j++) {
index.second = dof.glob_dof(fe.dof(j)); // fetch the global dof for Nj
ex nabla = inner(grad(fe.N(i)), // compute the integrand

grad(fe.N(j)));
ex Aij = domain.integrate(nabla); // compute the integral
A[index] += Aij; // add to global matrix

}
}

}

Notice that in this example, both the degrees of freedom dof and the matrix A

are global.
This function can be used as follows (see fe ex4.cpp),

//matrix in terms of rational numbers
int order = 1;
Triangle triangle(lst(0,0), lst(1,0), lst(0,1));
LagrangeFE fe;
fe.set(order);
fe.set(triangle);
fe.compute_basis_functions();

Dof dof;
std::map<std::pair<int,int>, ex> A;
compute_Poisson_element_matrix(fe, dof, A);

In the above example, the vertices were integers, therefore the entries in
the matrix will be rational numbers. In the following example the vertices are
symbols.

//matrix in terms of symbols
symbol x0("x0"), x1("x1"), x2("x2");
symbol y0("y0"), y1("y1"), y2("y2");
Triangle triangle2(lst(x0,y0), lst(x1,y1), lst(x2,y2));

LagrangeFE fe2;
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fe2.set(order);
fe2.set(triangle2);
fe2.compute_basis_functions();

Dof dof2;
std::map<std::pair<int,int>, ex> A2;
compute_Poisson_element_matrix(fe2, dof2, A2);

In this case A2 will contain expressions involving the vertices, (x0, y0), (x1, y1),
(x2, y2) (we used a triangle above).

The GiNaC library supports many different ways to print out the output. In
the example below, we turn on LATEX output with the command cout <<latex;
before we print out A2.

cout <<"LaTeX format on output "<<endl;
cout <<latex;
print(A2);

This gives the following expression (compiled by latex) for A[1, 1] (code for the
other entries are also produced, but these are not shown here).

A[1, 1] =
1

2

x2
0|(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|

(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)
2

−y1y0|(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|
(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)

2

+
1

2

y2
0 |(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|

(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)
2

−x0|(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|x1

(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)
2

+
1

2

|(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|x2
1

(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)
2

+
1

2

y2
1 |(−x0 + x1)(y2 − y0) − (−x0 + x2)(y1 − y0)|

(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)
2

We can also print out C code,

cout <<"C code format on output "<<endl;
cout <<csrc;
print(A2);

Then the following code for A[1, 1] is produced,

A[1,1]=(x0*x0)/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)
*fabs((-x0+x1)*(y2-y0)-(-x0+x2)*(y1-y0))/2.0
-y1/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)*y0
*fabs((-x0+x1)*(y2-y0)-(-x0+x2)*(y1-y0))
+1.0/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)*(y0*y0)
*fabs((-x0+x1)*(y2-y0)-(-x0+x2)*(y1-y0))/2.0
-x0/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)
*fabs((-x0+x1)*(y2-y0)-(-x0+x2)*(y1-y0))*x1
+1.0/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)*fabs((-x0+x1)*(y2-y0)
-(-x0+x2)*(y1-y0))*(x1*x1)/2.0+(y1*y1)
/pow(-y1*x2-x0*y2+y0*x2+y2*x1+x0*y1-y0*x1,2.0)
*fabs((-x0+x1)*(y2-y0)-(-x0+x2)*(y1-y0))/2.0
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As is clear, these expressions can be rather large. GiNaC does not, by
default, try to simplify these expressions. However, the above expressions
is composed of smaller expressions that appear many times and it is pos-
sible to simplify these expressions fairly easy. For instance, the expression
(−y1x2 − x0y2 + y0x2 + y2x1 + x0y1 − y0x1)

2
appears at least six times (and

this is only in A[1, 1]). Of course, this expression should be computed only
once. It seems that GiNaC has powerful tools for expression three traversal
that could enable generation of efficient code based on finding common sub-
expressions, but we have not exploited these tools to a great extent yet. Some
example code can be found in check visitor.cpp in the sandbox.

6.2 A Poisson Problem on Mixed Form

The Poisson problem can also be written on mixed form,

u−∇p = 0, in Ω,

∇ · u = f, in Ω,

u · n = g, on ∂ΩN ,

pn = hn on ∂ΩE .

Notice that essential boundary conditions for the Poisson problem on standard
form become natural conditions for the Poisson problem on mixed form and vice
versa.

The weak form of the Poisson problem on mixed form is: Find u ∈ Vg , p ∈ Q
such that

a(u,v) + b(v, p) = G(v), ∀v ∈ V0, (42)

b(u, q) = F (q), ∀q ∈ Q, (43)

where

a(u,v) =

∫

Ω

u · v dx, (44)

b(u, q) =

∫

Ω

∇ · u q dx, (45)

F (q) =

∫

Ω

f q dx, (46)

G(v) =

∫

ΩE

hn · v ds (47)

Vk = {v ∈ H(div) : v · n|∂ΩN
= k}, k = 0, g.

H(div) = {v ∈ L2 : ∇ · v ∈ L2},

Q =

{

L2
0 if ∂ΩN = ∂Ω,

L2 else.
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The function compute mixed Poisson element matrix in ElementComputations.cpp

computes the element matrix for the mixed Poisson problem. We will not com-
ment or list the code here because it is very similar to the code described in the
next section. An example of use is in mxpoisson ex.cpp.

6.3 A Stokes Problem

The Stokes problem is on the form: Find u and p such that

−∆u + ∇p = f , in Ω,

∇ · u = 0, in Ω,

u = g, on ∂ΩE ,

∂u

∂n
− pn = h, on ∂ΩN .

The weak form for the Stokes problem is: Find u ∈ Vg, p ∈ Q such that

a(u,v) + b(v, p) = F(v), ∀v ∈ V0,

b(u, q) = 0, ∀q ∈ Q,

where

a(u,v) =

∫

Ω

∇u : ∇v dx,

b(u, q) = −
∫

Ω

∇ · u q dx,

F(q) =

∫

Ω

f · v dx +

∫

ΩN

h · v ds,

Vk = {v ∈ H1 : v|∂ΩE
= k}, k = 0,g,

Q =

{

L2
0 if ∂ΩE = ∂Ω,

L2 else.

Notice that we have multiplied the equation for the mass conservation, ∇·u = 0,
with −1 to obtain symmetry.

The function compute Stokes element matrix in ElementComputations imple-
ments the computation of an element matrix for the Stokes problem. The code
is shown below.

void compute_Stokes_element_matrix(
FE& v_fe,
FE& p_fe,
Dof& dof,
std::map<std::pair<int,int>, ex>& A)

{
std::pair<int,int> index;
std::pair<int,int> index2;

Polygon& domain = v_fe.getPolygon();

// Insert the local degrees of freedom into the global Dof
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for (int i=0; i< v_fe.nbf(); i++) {
dof.insert_dof(1,i,v_fe.dof(i));

}
for (int i=0; i< p_fe.nbf(); i++) {

dof.insert_dof(1,v_fe.nbf()+i,p_fe.dof(i));
}

// The term (grad u, grad v)
for (int i=0; i< v_fe.nbf(); i++) {

index.first = dof.glob_dof(v_fe.dof(i)); // fetch the global dof for v_i
for (int j=0; j< v_fe.nbf(); j++) {
index.second = dof.glob_dof(v_fe.dof(j)); // fetch the global dof for v_j
GiNaC::ex nabla = inner(grad(v_fe.N(i)),

grad(v_fe.N(j))); // compute the integrand
GiNaC::ex Aij = domain.integrate(nabla); // compute the integral
A[index] += Aij; // add to global matrix

}
}

// The term (-div u, q)
for (int i=0; i< p_fe.nbf(); i++) {

index.first = dof.glob_dof(p_fe.dof(i)); // fetch the global dof for p_i
for (int j=1; j< v_fe.nbf(); j++) {
index.second=dof.glob_dof(v_fe.dof(j)); // fetch the global dof for v_j
ex divV= -p_fe.N(i)*div(v_fe.N(j)); // compute the integrand
ex Aij = domain.integrate(divV); // compute the integral
A[index] += Aij; // add to global matrix

// Do not need to compute the term (grad(p),v), since the system is
// symmetric. We simply set Aji = Aij
index2.first = index.second;
index2.second = index.first;
A[index2] -= Aij;

}
}

}

6.4 A Nonlinear Convection Diffusion Problem

Our next example concerns a nonlinear convection diffusion equation, where
we compute the element matrix for the Jacobian typically arising in a Newton
iteration. Let the PDE be,

(u · ∇)u − ∆u = f , in Ω, (48)

u = g, on ∂Ω. (49)

This can be stated on weak form as: Find u ∈ Vg such that

F(u,v) = 0, ∀v ∈ V0,

where

F(u,v) =

∫

Ω

(u · ∇u) · v dx +

∫

Ω

∇u : ∇v dx −
∫

Ω

f · v dx

and
Vk = {v ∈ H1 : v|∂Ω = k}, k = 0,g.
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The Jacobian is obtained by letting u = û =
∑

j ujNj , v = Ni and differenti-
ating F with respect to uj ,

Jij =
∂F (û,Ni)

∂uj

.

This is precisely the way it is done with SyFi, (see also nljacobian ex.cpp),

void compute_nlconvdiff_element_matrix(
FE& fe,
Dof& dof,
std::map<std::pair<int,int>, ex>& A)

{
std::pair<int,int> index;
Polygon& domain = fe.getPolygon();

// insert the local dofs into the global Dof object
for (int i=0; i< fe.nbf() ; i++) {

dof.insert_dof(1,i,fe.dof(i));
}

// create the local U field: U = sum_k u_k N_k
ex UU = matrix(2,1,lst(0,0));
ex ujs = symbolic_matrix(1,fe.nbf(), "u");
for (int k=0; k< fe.nbf(); k++) {

UU +=ujs.op(k)*fe.N(k); // U += u_k N_k
}

//Get U represented as a matrix
matrix U = ex_to<matrix>(UU.evalm());

for (int i=0; i< fe.nbf() ; i++) {
index.first = dof.glob_dof(fe.dof(i)); // fetch global dof

// First: the diffusion term in Fi
ex gradU = grad(U); // compute the gradient
ex Fi_diffusion = inner(gradU, grad(fe.N(i))); // grad(U)*grad(Ni)

// Second: the convection term in Fi
ex Ut = U.transpose(); // get the transposed of U
ex UgradU = (Ut*gradU).evalm(); // compute U*grad(U)
ex Fi_convection = inner(UgradU, fe.N(i), true); // compute U*grad(U)*Ni

// add together terms for convection and diffusion
ex Fi = Fi_convection + Fi_diffusion;

// Loop over all uj and differentiate Fi with respect
// to uj to get the Jacobian Jij
for (int j=0; j< fe.nbf() ; j++) {
index.second = dof.glob_dof(fe.dof(j)); // fetch global dof
symbol uj = ex_to<symbol>(ujs.op(j)); // cast uj to a symbol
ex Jij = Fi.diff(uj,1); // differentiate Fi wrt. uj
ex Aij = domain.integrate(Jij); // intergrate the Jacobian Jij
A[index] += Aij; // update the global matrix

}
}

}

Running the example nljacobian ex, which employs second order continuous
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Lagrangian elements, yields the following output for A[1, 1],

A[1, 1] =
1

2
+

2

105
u3 +

2

105
u7 +

1

21
u2

13

420
u1 −

1

280
u11 (50)

− 1

21
u6 −

1

280
u5

1

140
u10 +

1

210
u9 −

1

140
u4. (51)

We have used GiNaC to generate the LATEXcode, as described on Page 39.

7 Python Support

SyFi now comes with Python support. The SyFi Python module is created by
using the tool SWIG (http://www.swig.org). One should also install the Python
interface to GiNaC called Swiginac (http://swiginac.berlios.de/).

The Python interface to SyFi is in its early stages, and has not yet been
tested much. However, it appears to be quite easy to use in connection with
Swiginac, as will be demonstrated.

First, a few remarks concerning GiNaC and Swiginac. In the C++ library
GiNaC, one has the powerful object ex which is ”typeless”, i.e., it can be any
GiNaC type, like e.g., numeric, function, matrix, or lst. On the other hand,
Python is in itself typeless in the sense that a Python variable may refer to a
Python object of any type. For this reason, the authors of Swiginac have chosen
to let Python manage the ”typelessness” and therefore Swiginac does not use
objects of type ex. The following code shows how Swiginac can be used (see
also simple.py),

from swiginac import *

x = symbol("x")
y = symbol("y")

f = sin(x)
print "f = ", f
dfdx = diff(f,x)
print "dfdx = ", dfdx

In Python, x, y, f, and dfdx are not declared to be of any type, but x and y will
be symbol objects, while f and dfdx are function objects. In C++ all objects
could have been declared to be of type ex. However, the underlying objects
would be of type symbol or function, just as in Python.

Many SyFi functions require ex objects as input. Python objects created by
Swiginac are usually not of type ex, instead they are Python wrappers around
the underlying object. As described above, x is not of type ex, it is a Python
wrapper on top of a symbol object. Fortunately, Swiginac has a function toex
which can be used to create a Python ex object, which is a Python wrapper on
top of a C++ ex object (which is on top of an underlying object such as e.g.,
symbol). Swiginac also has the function eval for accessing the underlying object
of a Python object of type ex. Both toex and eval will be used frequently below.
One can check the behavior of toex and eval as follows (see also simple.py),

print "type(x) ", type(x) # swiginac.symbol
print "type(x.eval()) ", type(x.eval()) # swiginac.symbolPtr
print "type(toex(x)) ", type(toex(x)) # swiginac.exPtr
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print "type((toex(x)).eval()) ", type((toex(x)).eval()) # swiginac.exPtr
print "type(f) ", type(f) # swiginac.functionPtr
print "type(f.eval()) ", type(f.eval()) # swiginac.functionPtr
print "type(toex(f)) ", type(toex(f)) # swiginac.exPtr
print "type((toex(f)).eval()) ", type((toex(f)).eval()) # swiginac.functionPtr

SyFi classes and functions can be used in Python just as they are used in
C++. The following example shows how to compute the element matrix for a
Poisson problem using forth order Lagrangian elements,

from swiginac import *
from SyFi import *

p0 = [0,0,0]; p1 = [1,0,0]; p2 = [0,1,0]
triangle = Triangle(toex(p0), toex(p1), toex(p2))

fe = LagrangeFE()
fe.set(4)
fe.set(triangle)
fe.compute_basis_functions()
print fe.nbf()
for i in range(0,fe.nbf()):
for j in range(0,fe.nbf()):

integrand = inner(grad(fe.N(i)),grad(fe.N(j)))
Aij = triangle.integrate(integrand)
print "A(%d,%d)="%(i,j), Aij.eval()

Finally, we show a Python implementation of the Crouizex-Raviart element
(The C++ implementation can be found in the file CrouzeixRaviart.cpp). No-
tice that in this code we inherit the functions ex N(int i) and ex dof(int i)
and the exvectors Ns and dofs from the C++ class StandardFE. Hence, thanks
to SWIG, cross-language inheritance works, and we therefore only need to im-
plement the function compute basis functions. The following example is imple-
mented in crouzeixraviart.py.

from swiginac import *
from SyFi import *

x = cvar.x; y = cvar.y; z = cvar.z # fetch some global variables

class CrouzeixRaviart(StandardFE):
"""

Python implementation of the Crouzeix-Raviart element.
The corresponding C++ implementation is in the
file CrouzeixRaviart.cpp.

"""

def __init__(self):
""" Constructor """
StandardFE.__init__(self)

def compute_basis_functions(self):
"""
Compute the basis functions and degrees of freedom
and put them in Ns and dofs, respectively.
"""
polspace = bernstein(1,triangle,"a")
N = polspace.eval()[0]
variables = polspace.eval()[1]
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for i in range(0,3):
line = triangle.line(i+1)
dofi = line.integrate(toex(N))
self.dofs.append(dofi)

for i in range(0,3):
equations = []
for j in range(0,3):

equations.append(self.dofs[j].eval() == dirac(i,j) )
sub = lsolve(equations, variables)
Ni = N.subs(sub)
self.Ns.append(toex(Ni));

p0 = [0,0,0]; p1 = [1,0,0]; p2 = [0,1,0];

triangle = Triangle(toex(p0), toex(p1), toex(p2))

fe = CrouzeixRaviart()
fe.set(triangle)
fe.compute_basis_functions()
for i in range(0,fe.nbf()):
print "N(%d) = "%i, fe.N(i).eval()
print "grad(N(%d)) = "%i, grad(fe.N(i)).eval()
print "dof(%d) = "%i, fe.dof(i).eval()

8 Code Generation

In this section we will describe some matrix factories created for the PyCC
project [3], which have been made by using SyFi, GiNaC and Swiginac. At
present, we have written ca. 1500 lines of Python code using SyFi, Swiginac etc.,
which have generated roughly 60 000 lines of C++ code for the computation
(of various variants) of the mass matrix, the stiffness matrix, the convection
matrix and the divergence matrix using Lagrangian elements of order 1-5 in
2D and 1-3 in 3D. Furthermore, the generated C++ code is efficient, since
everything except the geometry mapping can be computed exactly. Notice also
that although only Lagrangian elements have been used so far, most of the
Python code that generated the C++ code is completely element independent.
In addition to the generated C++ code we have also written about 1500 lines
of code which loops over the cells of a Dolfin mesh [1] such that global matrices
are made.

We have create two matrix factories. These are implemented in MatrixFactory

and MatrixFactory highorder. There are three differences between these two
factories. The first difference is that MatrixFactory employs the numbering of
degrees of freedom in the Dolfin mesh. Therefore, this MatrixFactory is limited
to linear Lagrangian elements. On the other hand, MatrixFactory highorder

uses DofT, described in Section 3.5, which works for general elements. The sec-
ond difference is that in MatrixFactory the integration is performed on a global
element with global basis functions, e.g., for the stiffness matrix,

Aij =

∫

T

∇Ni∇Njdx. (52)
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In MatrixFactory highorder, the integration is performed on the reference ele-
ment with a geometry tensor G (the Jacobian of the geometry mapping) and
D = det(G),

Aij =

∫

T̂

(G−T∇N̂i) · (G−T∇N̂j)D dx. (53)

which is the typical way to do it in finite element codes. At present, we favor
(53) to (52) simply because it produces much smaller expressions and therefore
faster code. However, the large expressions in (52) typically involve subexpres-
sions repeated many times. Hence, it should be possible to postprocess these
expressions to create smaller expressions and faster code. However, we have
not done this yet. Finally, the third difference is that MatrixFactory highorder

works for the FastMatSparse matrix in PyCC, the Epetra matrix in Trilinos [6]
and for STL maps of type map<pair<int,int>,double>.

8.1 Basic Tools

We will illustrate the code generation by considering what was done for the
mass matrix in MatrixFactory highorder.

The entries of a mass matrix are:

Mkl =

∫

T

NkNl dx =

∫

T̂

N̂iN̂jD dx, ,

where T is the global polygon, Nk and Nl are the k’th and l’th global basis
functions, respectively, T̂ is the reference polygon, N̂i and N̂j are the i’th and
j’th basis functions on the reference polygon corresponding to k and l, respec-
tively, and D is the determinant of the Jacobian of the geometry mapping. The
following code shows how this can be done (see also code gen.py):

def create_A_string_mass(fe):
A_str = " double A[%d][%d];\n"%(fe.nbf(), fe.nbf())
domain = fe.getPolygon()

# loop over all N(i)
for i in range(0,fe.nbf()):

# loop over all N(j)
for j in range(0,fe.nbf()):

# compute the integrand N(i)*N(j)
integrand = fe.N(i).eval()*fe.N(j).eval()

# integrate over the domain
Aij = domain.integrate(toex(integrand))

# generate C string and append the string to the rest
A_str += " A[%d][%d]=(%s)*D;\n"%(i,j,Aij.eval().evalf().printc())

The following output is produced, when using linear element on a 2D triangle
(see also matrix factory mass 2D.cc, which also contains code for higher order
Lagrangian elements),

double A[3][3];
A[0][0]=(8.3333333333333329e-02)*D;
A[0][1]=(4.1666666666666664e-02)*D;
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A[0][2]=(4.1666666666666664e-02)*D;
A[1][0]=(4.1666666666666664e-02)*D;
A[1][1]=(8.3333333333333329e-02)*D;
A[1][2]=(4.1666666666666664e-02)*D;
A[2][0]=(4.1666666666666664e-02)*D;
A[2][1]=(4.1666666666666664e-02)*D;
A[2][2]=(8.3333333333333329e-02)*D;

Hence, this is the mass element matrix on the reference element multiplied
with D. In addition to computing the element matrix we also need to computed
the global degrees of freedom and generate a C function. We will not go into
details on this, but recommend the reader to have a look in code gen.py.

The complete function for the computation of the element matrix, in the
case of linear Lagrangian elements, and the insertion of the element matrix in
the global matrix can be found in matrix factory mass 2D.cc is:

void matrix_factory_mass_2D_order1 (map<pair<int,int>,double>& matrix,
DofT<ptv,ptv_is_less>& dof,
int element, double pp0[2], double pp1[2], double pp2[2]){

// geometry related stuff

double x0 = pp0[0]; double y0 = pp0[1];
double x1 = pp1[0]; double y1 = pp1[1];
double x2 = pp2[0]; double y2 = pp2[1];

double G00 = x1 - x0; double G01 = x2 - x0;
double G10 = y1 - y0; double G11 = y2 - y0;

double D = fabs(G00*G11-G01*G10);

// inserting local dofs in the global dof handler (dof)

int iidof[3];
double dof1[2];
dof1[0]=x0; dof1[1]=y0;
ptv pdof1(2,dof1);
iidof[0] = dof.insert_dof(element,1,pdof1);

double dof2[2];
dof2[0]=G01+x0; dof2[1]=y0+G11;
ptv pdof2(2,dof2);
iidof[1] = dof.insert_dof(element,2,pdof2);

double dof3[2];
dof3[0]=G00+x0; dof3[1]=G10+y0;
ptv pdof3(2,dof3);
iidof[2] = dof.insert_dof(element,3,pdof3);

// compute the element matrix

double A[3][3];
A[0][0]=(8.3333333333333329e-02)*D;
A[0][1]=(4.1666666666666664e-02)*D;
A[0][2]=(4.1666666666666664e-02)*D;
A[1][0]=(4.1666666666666664e-02)*D;
A[1][1]=(8.3333333333333329e-02)*D;
A[1][2]=(4.1666666666666664e-02)*D;
A[2][0]=(4.1666666666666664e-02)*D;
A[2][1]=(4.1666666666666664e-02)*D;
A[2][2]=(8.3333333333333329e-02)*D;

// insert element matrix into global matrix
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int nbf = 3;
pair<int,int> index;
for (int i=0; i< nbf; i++) {

index.first = iidof[i];
for (int j=0; j< nbf; j++) {
index.second = iidof[j];
matrix[index] += A[i][j];

}
}

}

Finally, we show how the above function is used in PyCC to compute the
mass matrix on a Dolfin mesh (see also MatrixFactory highorder.cpp)

void MapMatrixFactory:: computeMassMatrix(){

int e = -1;

if (mesh->numSpaceDim() == 2) {

double p0[2];
double p1[2];
double p2[2];

for (CellIterator cell(*mesh); !cell.end(); ++cell) {

e++;

// Obtain vertices from Dolfin mesh
Vertex& v0 = (*cell).vertex(0);
Vertex& v1 = (*cell).vertex(1);
Vertex& v2 = (*cell).vertex(2);

// Create double arrays with the data from the vertices
p0[0] = v0.coord().x; p0[1] = v0.coord().y;
p1[0] = v1.coord().x; p1[1] = v1.coord().y;
p2[0] = v2.coord().x; p2[1] = v2.coord().y;

switch(order1) {
case 1 :

matrix_factory_mass_2D_order1(*matrix,*idof,e,p0,p1,p2);
break;

case 2 :
matrix_factory_mass_2D_order2(*matrix,*idof,e,p0,p1,p2);
break;

case 3 :
matrix_factory_mass_2D_order3(*matrix,*idof,e,p0,p1,p2);
break;

case 4 :
matrix_factory_mass_2D_order4(*matrix,*idof,e,p0,p1,p2);
break;

case 5 :
matrix_factory_mass_2D_order5(*matrix,*idof,e,p0,p1,p2);
break;

}
}

}
}

Notice that this code works for Lagrangian elements of order 1-5 in 2D.
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8.2 Debugging

Debugging finite element codes is often extremely hard, at least that is the
authors’ experience. This has been one of the reasons why we have chosen to
employ a symbolic math engine behind the curtain in the first place.

One of the advantages of SyFi is that one obtain explicit symbolic expres-
sions for all the basis functions (and its derivatives). Another good thing is
that one can create global finite elements, that is finite elements that are not
defined on reference geometries, and perform integration and differentiation on
their geometries. For instance, when we created the divergence matrix factory
we initially had a mysterious bug which took us several hours to find. To locate
the bug, we computed the divergence element matrix on a global element with
the vertices x0 = (0.2, 0.2), x1 = (0.4, 0.2), and x2 = (0.1, 0.3), and compared
it with the divergence element matrix on the reference element with the cor-
responding geometry tensor. To do this, we wrote the following code (see also
main syfi.cpp):

// create global triangle
lst p0(0.2, 0.2);
lst p1(0.4, 0.2);
lst p2(0.1, 0.3);
Triangle triangle(p0,p1,p2);

// create vector element for v on the global triangle
VectorLagrangeFE v_fe;
v_fe.set_size(2);
v_fe.set(vorder);
v_fe.set(triangle);
v_fe.compute_basis_functions();

// create scalar element for p on the global triangle
LagrangeFE p_fe;
p_fe.set(1);
p_fe.set(triangle);
p_fe.compute_basis_functions();

// compute global element matrix
map<pair<int,int>, ex> A;
pair<int,int> index;
for (int i=0; i< p_fe.nbf(); i++) {

index.first = i;
for (int j=0; j< v_fe.nbf(); j++) {
index.second= j;
ex divV= p_fe.N(i)*div(v_fe.N(j));
ex Aij = triangle.integrate(divV);
A[index] = Aij;

}
}

The element matrix created by this code was then printed out and compared
with the element matrix computed by the matrix factory on the same polygon
(see dolfin main.cpp). By comparing each entry of the two matrices we quickly
found the (uninteresting) bug. Hence, in out experience it is extremely valuable
to have the concrete basis functions etc. on global element, and being able to
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work with them both with a pen and a paper and the computer, to reveal what
is going on.
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